Skip to content

libphy/CSCI4622-20SP-MachineLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

CSCI 4622: Undergraduate Machine Learning (University of Colorado Boulder, Spring 2020)

Note: This schedule is a rough approximation and subject to change. Reading chapters are from the textbooks unless mentioned otherwise. Currently we have two textbooks. ISLR- Introduction to statistical learning with applications in R ACML- A course in machine learning

Week Date Reading Topic Slides Assignments
1 Jan. 13 Machine Learning Intro., KNN slides
Jan. 15 ISLR 3.1, 3.2 Linear Regression slides
Jan. 17 Hands-on: EDA notebooks HW1 out
2 Jan. 20 No class: MLK
Jan. 22 ISLR 4.3 Logistic regression slides
Jan. 24 ISLR 6.2.1-6.2.3, 5.1 Techniques to improve training slides
3 Jan. 27 ISLR 8.1 Decision Tree 1 slides
Jan. 29 ISLR 8.1 Decision Tree 2 slides
Jan. 31 Hands-on HW1 due, HW2 out
4 Feb. 3 ISLR 8.3.3 Ensemble methods 1: Bagging slides
Feb. 5 ISLR 8.3.4 Ensemble methods 2: Boosting slides
Feb. 7 Kaggle mini comp 1: regression challenge
5 Feb. 10 ISLR 9.1, 9.2 SVM 1 slides
Feb. 12 ISLR 9.3-9.5 SVM 2 slides mini comp 1 closes
Feb. 14 Hands-on
6 Feb. 17 ACML ch4 Neural Network 1 (perceptron) slides HW2 due
Feb. 19 midterm review
Feb. 21 Midterm 1
7 Feb. 24 deeplearningbook Ch.6.1-6.4 Neural Network 2 (training perceptron, ANN design parameters), demo: intro to Keras slides HW3 out
Feb. 26 deeplearningbook Ch.6.5, 8.3 Back Propagation, Stochastic Gradient Descent slides
Feb. 28 deeplearningbookCh.8.3, 8.5, 8.7.1 More optimization algorithms, Training tricks, Kaggle mini comp 2: classification challenge slides
8 Mar. 2 ISLR 10.1, 10.2, 6.3 Unsupervised Learning 1: Dimensionality Reduction slides
Mar. 4 ISLR 10.3 Unsupervised Learning 2: Clustering slides
Mar. 6 Hands-on mini comp 2 closes, HW4 out
9 Mar. 9 MMDS Ch.9.1-9.3 Recommender System slides
Mar. 11 MMDS Ch.9.4-9.6, paper Matrix Factorization slides HW3 due
Mar. 13 Kaggle mini comp 3: unsupervised learning Class canceled due to COVID-19
10 Mar. 16 NMF applications-Topic modeling notebook, whiteboard
Mar. 18 deeplearningbook Ch. 9.1-9.3, 9.10, 9.11 CNN 1: Basics slides
Mar. 20 resource: Stanford's 231n course has great resources on (convolutional) neural networks. CNN 2: Architectures & Training slides
11 Mar. 23 No class: Spring Break
Mar. 25 No class: Spring Break
Mar. 27 No class: Spring Break
12 Mar. 30 review
Apr. 1 review
Apr. 3 Midterm 2
13 Apr. 6 CNN 3: Advanced topic slides
Apr. 8 deeplearningbook Ch. 14.1-14.5 Unsupervised Neural Networks notebook whiteboard HW4 due, HW5 out
Apr.10 Kaggle mini comp 4: Image classification, Keras mini tutorial project announcement
14 Apr. 13 deeplearningbook Ch. 10.1, 10.2 RNN 1 slides
Apr. 15 RNN 2 mini comp 4 closes
Apr. 17 Hands-on
15 Apr.20 project discussion Team formation deadline
Apr. 22 project discussion
Apr. 24 project discussion HW5 due
16 Apr. 27 project discussion
Apr. 29 project discussion
May. 1 no class
Finals week May. 3 Project deliverable due

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published