Skip to content

A unified interface for various AI model providers

License

Notifications You must be signed in to change notification settings

lfnovo/esperanto

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

55 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Esperanto 🌐

PyPI version PyPI Downloads Coverage Python Versions License: MIT

Esperanto is a powerful Python library that provides a unified interface for interacting with various Large Language Model (LLM) providers. It simplifies the process of working with different AI models (LLMs, Embedders, Transcribers, and TTS) APIs by offering a consistent interface while maintaining provider-specific optimizations.

Features ✨

  • Unified Interface: Work with multiple LLM providers using a consistent API
  • Provider Support:
    • OpenAI (GPT-4, GPT-3.5, o1, Whisper, TTS)
    • Anthropic (Claude 3)
    • OpenRouter (Access to multiple models)
    • xAI (Grok)
    • Groq (Mixtral, Llama, Whisper)
    • Google GenAI (Gemini LLM, Text To Speech, Embedding)
    • Vertex AI (Google Cloud)
    • Ollama (Local deployment)
    • ElevenLabs (Text-to-Speech)
  • Embedding Support: Multiple embedding providers for vector representations
  • Speech-to-Text Support: Transcribe audio using multiple providers
  • Text-to-Speech Support: Generate speech using multiple providers
  • Async Support: Both synchronous and asynchronous API calls
  • Streaming: Support for streaming responses
  • Structured Output: JSON output formatting (where supported)
  • LangChain Integration: Easy conversion to LangChain chat models

For detailed information about our providers, check out:

Installation πŸš€

Install Esperanto using pip:

pip install esperanto

For specific providers, install with their extras:

# For OpenAI support
pip install "esperanto[openai]"

# For Anthropic support
pip install "esperanto[anthropic]"

# For Google (GenAI) support
pip install "esperanto[google]"

# For Vertex AI support
pip install "esperanto[vertex]"

# For Groq support
pip install "esperanto[groq]"

# For Ollama support
pip install "esperanto[ollama]"

# For ElevenLabs support
pip install "esperanto[elevenlabs]"

# For Google TTS support
pip install "esperanto[googletts]"

# For all providers
pip install "esperanto[all]"

Provider Support Matrix

Provider LLM Support Embedding Support Speech-to-Text Text-to-Speech JSON Mode
OpenAI βœ… βœ… βœ… βœ… βœ…
Anthropic βœ… ❌ ❌ ❌ βœ…
Groq βœ… ❌ βœ… ❌ βœ…
Google (GenAI) βœ… βœ… ❌ βœ… βœ…
Vertex AI βœ… βœ… ❌ ❌ ❌
Ollama βœ… βœ… ❌ ❌ ❌
ElevenLabs ❌ ❌ ❌ βœ… ❌

Quick Start πŸƒβ€β™‚οΈ

You can use Esperanto in two ways: directly with provider-specific classes or through the AI Factory.

Using AI Factory

The AI Factory provides a convenient way to create model instances and discover available providers:

from esperanto.factory import AIFactory

# Get available providers for each model type
providers = AIFactory.get_available_providers()
print(providers)
# Output:
# {
#     'language': ['openai', 'anthropic', 'google', 'groq', 'ollama', 'openrouter', 'xai'],
#     'embedding': ['openai', 'google', 'ollama', 'vertex'],
#     'speech_to_text': ['openai', 'groq'],
#     'text_to_speech': ['openai', 'elevenlabs', 'google']
# }

# Create model instances
model = AIFactory.create_language(
    "openai", 
    "gpt-3.5-turbo",
    structured={"type": "json"}
)  # Language model
embedder = AIFactory.create_embedding("openai", "text-embedding-3-small")  # Embedding model
transcriber = AIFactory.create_speech_to_text("openai", "whisper-1")  # Speech-to-text model
speaker = AIFactory.create_text_to_speech("openai", "tts-1")  # Text-to-speech model

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What's the capital of France?"},
]
response = model.chat_complete(messages)

# Create an embedding instance
texts = ["Hello, world!", "Another text"]
# Synchronous usage
embeddings = embedder.embed(texts)
# Async usage
embeddings = await embedder.aembed(texts)

Using Provider-Specific Classes

Here's a simple example to get you started:

from esperanto.providers.llm.openai import OpenAILanguageModel
from esperanto.providers.llm.anthropic import AnthropicLanguageModel

# Initialize a provider with structured output
model = OpenAILanguageModel(
    api_key="your-api-key",
    model_name="gpt-4",  # Optional, defaults to gpt-4
    structured={"type": "json"}  # Optional, for JSON output
)

# Simple chat completion
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "List three colors in JSON format"}
]

# Synchronous call
response = model.chat_complete(messages)
print(response.choices[0].message.content)  # Will be in JSON format

# Async call
async def get_response():
    response = await model.achat_complete(messages)
    print(response.choices[0].message.content)  # Will be in JSON format

Standardized Responses

All providers in Esperanto return standardized response objects, making it easy to work with different models without changing your code.

LLM Responses

from esperanto.factory import AIFactory

model = AIFactory.create_language(
    "openai", 
    "gpt-3.5-turbo",
    structured={"type": "json"}
)
messages = [{"role": "user", "content": "Hello!"}]

# All LLM responses follow this structure
response = model.chat_complete(messages)
print(response.choices[0].message.content)  # The actual response text
print(response.choices[0].message.role)     # 'assistant'
print(response.model)                       # The model used
print(response.usage.total_tokens)          # Token usage information

# For streaming responses
for chunk in model.chat_complete(messages):
    print(chunk.choices[0].delta.content)   # Partial response text

Embedding Responses

from esperanto.factory import AIFactory

model = AIFactory.create_embedding("openai", "text-embedding-3-small")
texts = ["Hello, world!", "Another text"]

# All embedding responses follow this structure
response = model.embed(texts)
print(response.data[0].embedding)     # Vector for first text
print(response.data[0].index)         # Index of the text (0)
print(response.model)                 # The model used
print(response.usage.total_tokens)    # Token usage information

The standardized response objects ensure consistency across different providers, making it easy to:

  • Switch between providers without changing your application code
  • Handle responses in a uniform way
  • Access common attributes like token usage and model information

Provider Configuration πŸ”§

OpenAI

from esperanto.providers.llm.openai import OpenAILanguageModel

model = OpenAILanguageModel(
    api_key="your-api-key",  # Or set OPENAI_API_KEY env var
    model_name="gpt-4",      # Optional
    temperature=0.7,         # Optional
    max_tokens=850,         # Optional
    streaming=False,        # Optional
    top_p=0.9,             # Optional
    structured={"type": "json"},      # Optional, for JSON output
    base_url=None,         # Optional, for custom endpoint
    organization=None      # Optional, for org-specific API
)

Streaming Responses 🌊

Enable streaming to receive responses token by token:

# Enable streaming
model = OpenAILanguageModel(api_key="your-api-key", streaming=True)

# Synchronous streaming
for chunk in model.chat_complete(messages):
    print(chunk.choices[0].delta.content, end="", flush=True)

# Async streaming
async for chunk in model.achat_complete(messages):
    print(chunk.choices[0].delta.content, end="", flush=True)

Structured Output πŸ“Š

Request JSON-formatted responses (supported by OpenAI and some OpenRouter models):

model = OpenAILanguageModel(
    api_key="your-api-key", # or use ENV
    structured={"type": "json"}
)

messages = [
    {"role": "user", "content": "List three European capitals as JSON"}
]

response = model.chat_complete(messages)
# Response will be in JSON format

LangChain Integration πŸ”—

Convert any provider to a LangChain chat model:

model = OpenAILanguageModel(api_key="your-api-key")
langchain_model = model.to_langchain()

# Use with LangChain
from langchain.chains import ConversationChain
chain = ConversationChain(llm=langchain_model)

Contributing 🀝

We welcome contributions! Please see our Contributing Guidelines for details on how to get started.

License πŸ“„

This project is licensed under the MIT License - see the LICENSE file for details.

Development πŸ› οΈ

  1. Clone the repository:
git clone https://github.com/lfnovo/esperanto.git
cd esperanto
  1. Install dependencies:
pip install -r requirements.txt
  1. Run tests:
pytest