Releases: leo-bart/mbsim-wagons
v0.1.0
3D elements based on the enhanced continuum mechanics approach by Nachbagauer et al.
This release has both 2D and 3D elements tested and working.
Dependencies
- Numpy
- Assimulo
References
[1]M. Berzeri e A. A. Shabana, “Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation”, Journal of Sound and Vibration, vol. 235, nº 4, p. 539–565, 2000, doi: 10.1006/jsvi.1999.2935.
[2]M. L. Bittencourt, Computational solid mechanics: variational formulation and high order approximation. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2015.
[3]M. Géradin e A. Cardona, Flexible multibody dynamics : a finite element approach. Chichester, New York, Weinheim: J. Wiley & Sons, 2001.
[4]J. Gerstmayr, M. K. Matikainen, e A. Mikkola, “A geometrically exact beam element based on the absolute nodal coordinate formulation”, Multibody System Dynamics, vol. 20, nº 4, p. 359–384, 2008, doi: https://doi.org/10.1007/s11044-008-9125-3.
[5]K. Nachbagauer, P. Gruber, e J. Gerstmayr, “A 3D Shear Deformable Finite Element Based on the Absolute Nodal Coordinate Formulation”, in Multibody Dynamics, vol. 28, J.-C. Samin e P. Fisette, Orgs. Dordrecht: Springer Netherlands, 2013, p. 77–96. doi: 10.1007/978-94-007-5404-1_4.
[6]K. Nachbagauer, P. Gruber, e J. Gerstmayr, “Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples”, Journal of Computational and Nonlinear Dynamics, vol. 8, nº 2, p. 021004, abr. 2013, doi: 10.1115/1.4006787.
[7]K. Nachbagauer, A. Pechstein, H. Irschik, e J. Gerstmayr, “A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation”, Multibody System Dynamics, vol. 26, nº 3, p. 245–263, 2011, doi: 10.1007/s11044-011-9249-8.