Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Upstream derive handler for ToExpr from Mathlib #5906

Draft
wants to merge 4 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/Lean/Elab/Deriving.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,4 @@ import Lean.Elab.Deriving.FromToJson
import Lean.Elab.Deriving.SizeOf
import Lean.Elab.Deriving.Hashable
import Lean.Elab.Deriving.Ord
import Lean.Elab.Deriving.ToExpr
232 changes: 232 additions & 0 deletions src/Lean/Elab/Deriving/ToExpr.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
/-
Copyright (c) 2023 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
prelude
import Lean.Meta.Transform
import Lean.Elab.Deriving.Basic
import Lean.Elab.Deriving.Util
import Lean.ToExpr
import Lean.ToLevel


/-!
# A `ToExpr` derive handler

This module defines a `ToExpr` derive handler for inductive types. It supports mutually inductive
types as well.

The `ToExpr` derive handlers support universe level polymorphism. This is implemented using the
`Lean.ToLevel` class. To use `ToExpr` in places where there is universe polymorphism, make sure
to have a `[ToLevel.{u}]` instance available.

Implementation note: this derive handler was originally modeled after the `Repr` derive handler.
-/

namespace Lean.Deriving.ToExpr

open Lean Elab Lean.Parser.Term
open Meta Command Deriving

/-- Specialization of `Lean.Elab.Deriving.mkHeader` for `ToExpr`. -/
def mkToExprHeader (indVal : InductiveVal) : TermElabM Header := do
-- The auxiliary functions we produce are `indtype -> Expr`.
let header ← mkHeader ``ToExpr 1 indVal
return header

/-- Give a term that is equivalent to `(term| mkAppN $f #[$args,*])`.
As an optimization, `mkAppN` is pre-expanded out to use `Expr.app` directly. -/
def mkAppNTerm (f : Term) (args : Array Term) : MetaM Term :=
args.foldlM (fun a b => `(Expr.app $a $b)) f

/-- Create the body of the `toExpr` function
for the `ToExpr` instance, which is a `match` expression
that calls `toExpr` and `toTypeExpr` to assemble an expression for a given term.
For recursive inductive types, `auxFunName` refers to the `ToExpr` instance
for the current type.
For mutually recursive types, we rely on the local instances set up by `mkLocalInstanceLetDecls`. -/
def mkToExprBody (header : Header) (indVal : InductiveVal) (auxFunName : Name) :
TermElabM Term := do
let discrs ← mkDiscrs header indVal
let alts ← mkAlts
`(match $[$discrs],* with $alts:matchAlt*)
where
/-- Create the `match` cases, one per constructor. -/
mkAlts : TermElabM (Array (TSyntax ``matchAlt)) := do
let mut alts := #[]
for ctorName in indVal.ctors do
let ctorInfo ← getConstInfoCtor ctorName
let alt ← forallTelescopeReducing ctorInfo.type fun xs _ => do
let mut patterns := #[]
-- add `_` pattern for indices
for _ in [:indVal.numIndices] do
patterns := patterns.push (← `(_))
let mut ctorArgs := #[]
let mut rhsArgs : Array Term := #[]
let mkArg (x : Expr) (a : Term) : TermElabM Term := do
if (← inferType x).isAppOf indVal.name then
`($(mkIdent auxFunName) $a)
else if ← Meta.isType x then
`(toTypeExpr $a)
else
`(toExpr $a)
-- add `_` pattern for inductive parameters, which are inaccessible
for i in [:ctorInfo.numParams] do
let a := mkIdent header.argNames[i]!
ctorArgs := ctorArgs.push (← `(_))
rhsArgs := rhsArgs.push <| ← mkArg xs[i]! a
for i in [:ctorInfo.numFields] do
let a := mkIdent (← mkFreshUserName `a)
ctorArgs := ctorArgs.push a
rhsArgs := rhsArgs.push <| ← mkArg xs[ctorInfo.numParams + i]! a
patterns := patterns.push (← `(@$(mkIdent ctorName):ident $ctorArgs:term*))
let levels ← indVal.levelParams.toArray.mapM (fun u => `(toLevel.{$(mkIdent u)}))
let rhs : Term ←
mkAppNTerm (← `(Expr.const $(quote ctorInfo.name) [$levels,*])) rhsArgs
`(matchAltExpr| | $[$patterns:term],* => $rhs)
alts := alts.push alt
return alts

/-- Create the body of the `toTypeExpr` function for the `ToExpr` instance.
Calls `toExpr` and `toTypeExpr` to the arguments to the type constructor. -/
def mkToTypeExpr (argNames : Array Name) (indVal : InductiveVal) : TermElabM Term := do
let levels ← indVal.levelParams.toArray.mapM (fun u => `(toLevel.{$(mkIdent u)}))
forallTelescopeReducing indVal.type fun xs _ => do
let mut args : Array Term := #[]
for i in [:xs.size] do
let x := xs[i]!
let a := mkIdent argNames[i]!
if ← Meta.isType x then
args := args.push <| ← `(toTypeExpr $a)
else
args := args.push <| ← `(toExpr $a)
mkAppNTerm (← `((Expr.const $(quote indVal.name) [$levels,*]))) args

/--
For mutually recursive inductive types, the strategy is to have local `ToExpr` instances in scope
for each of the inductives when defining each instance.
This way, each instance can freely use `toExpr` and `toTypeExpr` for each of the other types.

Note that each instance gets its own definition of each of the others' `toTypeExpr` fields.
(This is working around the fact that the `Deriving.Context` API assumes
that each instance in mutual recursion only has a single auxiliary definition.
There are other ways to work around it, but `toTypeExpr` implementations
are very simple, so duplicating them seemed to be OK.) -/
def mkLocalInstanceLetDecls (ctx : Deriving.Context) (argNames : Array Name) :
TermElabM (Array (TSyntax ``Parser.Term.letDecl)) := do
let mut letDecls := #[]
for i in [:ctx.typeInfos.size] do
let indVal := ctx.typeInfos[i]!
let auxFunName := ctx.auxFunNames[i]!
let currArgNames ← mkInductArgNames indVal
let numParams := indVal.numParams
let currIndices := currArgNames[numParams:]
let binders ← mkImplicitBinders currIndices
let argNamesNew := argNames[:numParams] ++ currIndices
let indType ← mkInductiveApp indVal argNamesNew
let instName ← mkFreshUserName `localinst
let toTypeExpr ← mkToTypeExpr argNames indVal
let letDecl ← `(Parser.Term.letDecl| $(mkIdent instName):ident $binders:implicitBinder* :
ToExpr $indType :=
{ toExpr := $(mkIdent auxFunName), toTypeExpr := $toTypeExpr })
letDecls := letDecls.push letDecl
return letDecls

/-- Fix the output of `mkInductiveApp` to explicitly reference universe levels. -/
def fixIndType (indVal : InductiveVal) (t : Term) : TermElabM Term :=
match t with
| `(@$f $args*) =>
let levels := indVal.levelParams.toArray.map mkIdent
`(@$f.{$levels,*} $args*)
| _ => throwError "(internal error) expecting output of `mkInductiveApp`"

/-- Make `ToLevel` instance binders for all the level variables. -/
def mkToLevelBinders (indVal : InductiveVal) : TermElabM (TSyntaxArray ``instBinderF) := do
indVal.levelParams.toArray.mapM (fun u => `(instBinderF| [ToLevel.{$(mkIdent u)}]))

open TSyntax.Compat in
/-- Make a `toExpr` function for the given inductive type.
The implementations of each `toExpr` function for a (mutual) inductive type
are given as top-level private definitions.
These end up being assembled into `ToExpr` instances in `mkInstanceCmds`.
For mutual inductive types,
then each of the other types' `ToExpr` instances are provided as local instances,
to wire together the recursion (this necessitates these auxiliary definitions being `partial`). -/
def mkAuxFunction (ctx : Deriving.Context) (i : Nat) : TermElabM Command := do
let auxFunName := ctx.auxFunNames[i]!
let indVal := ctx.typeInfos[i]!
let header ← mkToExprHeader indVal
let mut body ← mkToExprBody header indVal auxFunName
if ctx.usePartial then
let letDecls ← mkLocalInstanceLetDecls ctx header.argNames
body ← mkLet letDecls body
-- We need to alter the last binder (the one for the "target") to have explicit universe levels
-- so that the `ToLevel` instance arguments can use them.
let addLevels binder :=
match binder with
| `(bracketedBinderF| ($a : $ty)) => do `(bracketedBinderF| ($a : $(← fixIndType indVal ty)))
| _ => throwError "(internal error) expecting inst binder"
let binders := header.binders.pop
++ (← mkToLevelBinders indVal)
++ #[← addLevels header.binders.back]
let levels := indVal.levelParams.toArray.map mkIdent
if ctx.usePartial then
`(private partial def $(mkIdent auxFunName):ident.{$levels,*} $binders:bracketedBinder* :
Expr := $body:term)
else
`(private def $(mkIdent auxFunName):ident.{$levels,*} $binders:bracketedBinder* :
Expr := $body:term)

/-- Create all the auxiliary functions using `mkAuxFunction` for the (mutual) inductive type(s).
Wraps the resulting definition commands in `mutual ... end`. -/
def mkMutualBlock (ctx : Deriving.Context) : TermElabM Syntax := do
let mut auxDefs := #[]
for i in [:ctx.typeInfos.size] do
auxDefs := auxDefs.push (← mkAuxFunction ctx i)
`(mutual $auxDefs:command* end)

open TSyntax.Compat in
/-- Assuming all of the auxiliary definitions exist, create all the `instance` commands
for the `ToExpr` instances for the (mutual) inductive type(s). -/
def mkInstanceCmds (ctx : Deriving.Context) (typeNames : Array Name) :
TermElabM (Array Command) := do
let mut instances := #[]
for i in [:ctx.typeInfos.size] do
let indVal := ctx.typeInfos[i]!
if typeNames.contains indVal.name then
let auxFunName := ctx.auxFunNames[i]!
let argNames ← mkInductArgNames indVal
let binders ← mkImplicitBinders argNames
let binders := binders ++ (← mkInstImplicitBinders ``ToExpr indVal argNames)
let binders := binders ++ (← mkToLevelBinders indVal)
let indType ← fixIndType indVal (← mkInductiveApp indVal argNames)
let toTypeExpr ← mkToTypeExpr argNames indVal
let levels := indVal.levelParams.toArray.map mkIdent
let instCmd ← `(instance $binders:implicitBinder* : ToExpr $indType where
toExpr := $(mkIdent auxFunName).{$levels,*}
toTypeExpr := $toTypeExpr)
instances := instances.push instCmd
return instances

/-- Returns all the commands generated by `mkMutualBlock` and `mkInstanceCmds`. -/
def mkToExprInstanceCmds (declNames : Array Name) : TermElabM (Array Syntax) := do
let ctx ← mkContext "toExpr" declNames[0]!
let cmds := #[← mkMutualBlock ctx] ++ (← mkInstanceCmds ctx declNames)
trace[Elab.Deriving.toExpr] "\n{cmds}"
return cmds

/-- The main entry point to the `ToExpr` derive handler. -/
def mkToExprInstanceHandler (declNames : Array Name) : CommandElabM Bool := do
if (← declNames.allM isInductive) && declNames.size > 0 then
let cmds ← liftTermElabM <| mkToExprInstanceCmds declNames
cmds.forM elabCommand
return true
else
return false

builtin_initialize
registerDerivingHandler ``Lean.ToExpr mkToExprInstanceHandler
registerTraceClass `Elab.Deriving.toExpr

end Lean.Deriving.ToExpr
46 changes: 46 additions & 0 deletions src/Lean/ToLevel.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
/-
Copyright (c) 2023 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
prelude
import Lean.Expr

/-! # `ToLevel` class

This module defines `Lean.ToLevel`, which is the `Lean.Level` analogue to `Lean.ToExpr`.

-/

namespace Lean

universe w

/-- A class to create `Level` expressions that denote particular universe levels in Lean.
`Lean.ToLevel.toLevel.{u}` evaluates to a `Lean.Level` term representing `u` -/
class ToLevel.{u} where
/-- A `Level` that represents the universe level `u`. -/
toLevel : Level
/-- The universe itself. This is only here to avoid the "unused universe parameter" error.
We'll remove this field once https://github.com/leanprover/lean4/issues/2116 gets fixed.
-/
univ : ∃ x, x = PUnit.unit.{u} := ⟨_, rfl⟩
export ToLevel (toLevel)

instance : ToLevel.{0} where
toLevel := .zero

universe u v

instance [ToLevel.{u}] : ToLevel.{u+1} where
toLevel := .succ toLevel.{u}

/-- `ToLevel` for `max u v`. This is not an instance since it causes divergence. -/
def ToLevel.max [ToLevel.{u}] [ToLevel.{v}] : ToLevel.{max u v} where
toLevel := .max toLevel.{u} toLevel.{v}

/-- `ToLevel` for `imax u v`. This is not an instance since it causes divergence. -/
def ToLevel.imax [ToLevel.{u}] [ToLevel.{v}] : ToLevel.{imax u v} where
toLevel := .imax toLevel.{u} toLevel.{v}

end Lean
Loading