π§ Sentiment Analysis Web Tool π οΈ Technologies Used TextBlob β Sentiment analysis
Flask-SQLAlchemy β Database ORM
SQLite β Lightweight database for storing entries
HTML/CSS β Frontend templates
Render β Cloud deployment
π How to Run Locally
- Clone the repository git clone https://github.com/ldodson10/sentiment-app.git cd sentiment-app
- Create and activate a virtual environment (recommended): python -m venv venv venv\Scripts\activate # On Windows
- Install the required packages: pip install -r requirements.txt
- Run the application: python app.py Visit http://localhost:5000 in your browser.
βοΈ Deployment with Render This project is deployed using Render, a cloud hosting platform that enables developers to launch web applications with ease.
β‘ Why Render? Render simplifies the process of hosting and running backend applications like this Flask-based sentiment analysis tool. It automatically pulls the latest code from GitHub and deploys it, eliminating the need to manually manage infrastructure.
π§ Workflow Overview GitHub is used to store, version, and manage the project code. Render connects to the GitHub repository, builds the application, and hosts it live.
π Live Demo: https://sentiment-app-6y17.onrender.com
ποΈ Project Structure
π sentiment-app/
βββ app.py # Main application logic
βββ requirements.txt # Python dependencies
βββ render.yaml # Render deployment configuration
βββ templates/
β βββ index.html # Input form page
β βββ result.html # Output results page
βββ static/ # Static assets (if any)
βββ README.md # Project documentation