-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
build(matlab): add simulations for pernambuco
Add Matlab files, adapter for the Pernambuco scenario. It is important to let it be noted that the simulations for Pernambuco are in inital stage and incomplete. In order to properly model the COVID-19 evolution in the state of Pernambuco, model parameters should be updated. Fitting model parameters for such a complex model is not trivial and therefore, it was decided that this should be a future work.
- Loading branch information
Showing
7 changed files
with
2,471 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,389 @@ | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% MATLAB Code for epidemic simulations with the SIDARTHE model in the work | ||
% SENSITIVITY ANALYSIS: See the effect of changing the parameters | ||
% | ||
% Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy | ||
% by Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo, Angela Di Matteo, Marta Colaneri | ||
% | ||
% Giulia Giordano, April 5, 2020 | ||
% Contact: [email protected] | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
clear all | ||
close all | ||
clc | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% DATA | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% Pernambuco population | ||
popolazione=9e5; | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% PARAMETERS | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% Simulation horizon: CAN BE MODIFIED AT ONE'S WILL | ||
Orizzonte = 350; | ||
|
||
% Plot yes/no: SET TO 1 IF PDF FIGURES MUST BE GENERATED, 0 OTHERWISE | ||
plotPDF = 0; | ||
|
||
% Time-step for Euler discretisation of the continuous-time system | ||
step=0.01; | ||
|
||
% Transmission rate due to contacts with UNDETECTED asymptomatic infected | ||
alfa=0.57; | ||
% Transmission rate due to contacts with DETECTED asymptomatic infected | ||
beta=0.0114; | ||
% Transmission rate due to contacts with UNDETECTED symptomatic infected | ||
gamma=0.456; | ||
% Transmission rate due to contacts with DETECTED symptomatic infected | ||
delta=0.0114; | ||
|
||
% Detection rate for ASYMPTOMATIC | ||
epsilon=0.171; | ||
% Detection rate for SYMPTOMATIC | ||
theta=0.3705; | ||
|
||
% Worsening rate: UNDETECTED asymptomatic infected becomes symptomatic | ||
zeta=0.1254; | ||
% Worsening rate: DETECTED asymptomatic infected becomes symptomatic | ||
eta=0.1254; | ||
|
||
% Worsening rate: UNDETECTED symptomatic infected develop life-threatening | ||
% symptoms | ||
mu=0.0171; | ||
% Worsening rate: DETECTED symptomatic infected develop life-threatening | ||
% symptoms | ||
nu=0.0274; | ||
|
||
% Mortality rate for infected with life-threatening symptoms | ||
tau=0.01; | ||
|
||
% Recovery rate for undetected asymptomatic infected | ||
lambda=0.0342; | ||
% Recovery rate for detected asymptomatic infected | ||
rho=0.0342; | ||
% Recovery rate for undetected symptomatic infected | ||
kappa=0.0171; | ||
% Recovery rate for detected symptomatic infected | ||
xi=0.0171; | ||
% Recovery rate for life-threatened symptomatic infected | ||
sigma=0.0171; | ||
|
||
% Rate of loss of immunity | ||
ki=0; | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% DEFINITIONS | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% Parameters | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
|
||
% Initial R0 | ||
R0_iniziale=alfa/r1+beta*epsilon/(r1*r2)+gamma*zeta/(r1*r3)+delta*eta*epsilon/(r1*r2*r4)+delta*zeta*theta/(r1*r3*r4) | ||
|
||
% Time horizon | ||
t=1:step:Orizzonte; | ||
|
||
% Vectors for time evolution of variables | ||
S=zeros(1,length(t)); | ||
I=zeros(1,length(t)); | ||
D=zeros(1,length(t)); | ||
A=zeros(1,length(t)); | ||
R=zeros(1,length(t)); | ||
T=zeros(1,length(t)); | ||
H=zeros(1,length(t)); | ||
H_diagnosticati=zeros(1,length(t)); % DIAGNOSED recovered only! | ||
E=zeros(1,length(t)); | ||
|
||
% Vectors for time evolution of actual/perceived Case Fatality Rate | ||
M=zeros(1,length(t)); | ||
P=zeros(1,length(t)); | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% INITIAL CONDITIONS | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
I(1)=200/popolazione; | ||
D(1)=20/popolazione; | ||
A(1)=1/popolazione; | ||
R(1)=2/popolazione; | ||
T(1)=0.00; | ||
H(1)=0.00; | ||
E(1)=0.00; | ||
S(1)=1-I(1)-D(1)-A(1)-R(1)-T(1)-H(1)-E(1); | ||
|
||
H_diagnosticati(1) = 0.00; % DIAGNOSED recovered only | ||
Infetti_reali(1)=I(1)+D(1)+A(1)+R(1)+T(1); % Actual currently infected | ||
|
||
M(1)=0; | ||
P(1)=0; | ||
|
||
% Whole state vector | ||
x=[S(1);I(1);D(1);A(1);R(1);T(1);H(1);E(1);H_diagnosticati(1);Infetti_reali(1)]; | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% SIMULATION | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% "Control" binary variables to compute the new R0 every time a policy has | ||
% changed the parameters | ||
plottato = 0; | ||
plottato1 = 0; | ||
plottato_bis = 0; | ||
plottato_tris = 0; | ||
plottato_quat = 0; | ||
plottato_fin = 0; | ||
|
||
for i=2:length(t) | ||
|
||
if (i>4/step) % Basic social distancing (awareness, schools closed) | ||
alfa=0.4218; | ||
gamma=0.285; | ||
beta = 0.0057; | ||
delta=0.0057; | ||
if plottato == 0 % Compute the new R0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_primemisure=alfa/r1+beta*epsilon/(r1*r2)+gamma*zeta/(r1*r3)+delta*eta*epsilon/(r1*r2*r4)+delta*zeta*theta/(r1*r3*r4) | ||
plottato = 1; | ||
end | ||
end | ||
|
||
if (i>12/step) | ||
% Screening limited to / focused on symptomatic subjects | ||
epsilon=0.1425; | ||
if plottato1 == 0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_primemisureeps=alfa/r1+beta*epsilon/(r1*r2)+gamma*zeta/(r1*r3)+delta*eta*epsilon/(r1*r2*r4)+delta*zeta*theta/(r1*r3*r4) | ||
plottato1 = 1; | ||
end | ||
end | ||
|
||
if (i>22/step) % Social distancing: lockdown, mild effect | ||
|
||
alfa=0.36; | ||
beta=0.005; | ||
gamma=0.2; | ||
delta=0.005; | ||
|
||
mu = 0.008; | ||
nu = 0.015; | ||
|
||
zeta=0.034; | ||
eta=0.034; | ||
|
||
lambda=0.08; | ||
rho=0.0171; | ||
kappa=0.0171; | ||
xi=0.0171; | ||
sigma=0.0171; | ||
|
||
if plottato_bis == 0 % Compute the new R0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_secondemisure=(alfa*r2*r3*r4+epsilon*beta*r3*r4+gamma*zeta*r2*r4+delta*eta*epsilon*r3+delta*zeta*theta*r2)/(r1*r2*r3*r4) | ||
plottato_bis = 1; | ||
end | ||
end | ||
|
||
if (i>28/step) % Social distancing: lockdown, strong effect | ||
|
||
alfa=0.21; | ||
gamma=0.11; | ||
|
||
if plottato_tris == 0 % Compute the new R0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_terzemisure=(alfa*r2*r3*r4+epsilon*beta*r3*r4+gamma*zeta*r2*r4+delta*eta*epsilon*r3+delta*zeta*theta*r2)/(r1*r2*r3*r4) | ||
plottato_tris = 1; | ||
end | ||
end | ||
|
||
|
||
if (i>38/step) % Broader diagnosis campaign | ||
|
||
epsilon = 0.2; | ||
rho=0.02; | ||
kappa=0.02; | ||
xi=0.02; | ||
sigma=0.01; | ||
|
||
zeta=0.025; | ||
eta=0.025; | ||
|
||
if plottato_quat == 0 % Compute the new R0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_quartemisure=(alfa*r2*r3*r4+epsilon*beta*r3*r4+gamma*zeta*r2*r4+delta*eta*epsilon*r3+delta*zeta*theta*r2)/(r1*r2*r3*r4) | ||
plottato_quat = 1; | ||
end | ||
end | ||
|
||
% OUTLOOK: to EXPLORE POSSIBLE SCENARIOS, | ||
% change the parameters (after 50 days) | ||
if (i>50/step) | ||
|
||
% CHANGE THE PARAMETERS HERE: | ||
% parameter=nominalvalue*scalingfactor; | ||
% Set the scaling factor to some value different from 1 | ||
% for one or more parameters | ||
% to explore the effect of different parameter values | ||
|
||
alfa=0.2100*1; | ||
beta=0.0050*1; | ||
gamma=0.1100*1; | ||
delta=0.0050*1; | ||
|
||
epsilon= 0.2000*1; | ||
theta = 0.3705*1; | ||
|
||
zeta = 0.0250*1; | ||
eta = 0.0250*1; | ||
|
||
mu = 0.008*1; | ||
nu = 0.0150*1; | ||
|
||
tau = 0.0100*1; | ||
|
||
lambda = 0.0800*1; | ||
rho = 0.0200*1; | ||
kappa = 0.0200*1; | ||
xi = 0.0200*1; | ||
sigma = 0.0100*1; | ||
|
||
ki=0; | ||
|
||
if plottato_fin == 0 % Compute the new R0 | ||
r1=epsilon+zeta+lambda; | ||
r2=eta+rho; | ||
r3=theta+mu+kappa; | ||
r4=nu+xi; | ||
r5=sigma+tau; | ||
R0_final=(alfa*r2*r3*r4+epsilon*beta*r3*r4+gamma*zeta*r2*r4+delta*eta*epsilon*r3+delta*zeta*theta*r2)/(r1*r2*r3*r4) | ||
plottato_fin = 1; | ||
end | ||
|
||
end | ||
|
||
% Compute the system evolution | ||
|
||
B=[-alfa*x(2)-beta*x(3)-gamma*x(4)-delta*x(5) 0 0 0 0 0 ki 0 0 0; | ||
alfa*x(2)+beta*x(3)+gamma*x(4)+delta*x(5) -(epsilon+zeta+lambda) 0 0 0 0 0 0 0 0; | ||
0 epsilon -(eta+rho) 0 0 0 0 0 0 0; | ||
0 zeta 0 -(theta+mu+kappa) 0 0 0 0 0 0; | ||
0 0 eta theta -(nu+xi) 0 0 0 0 0; | ||
0 0 0 mu nu -(sigma+tau) 0 0 0 0; | ||
0 lambda rho kappa xi sigma -ki 0 0 0; | ||
0 0 0 0 0 tau 0 0 0 0; | ||
0 0 rho 0 xi sigma 0 0 0 0; | ||
alfa*x(2)+beta*x(3)+gamma*x(4)+delta*x(5) 0 0 0 0 0 0 0 0 0]; | ||
x=x+B*x*step; | ||
|
||
% Update variables | ||
|
||
S(i)=x(1); | ||
I(i)=x(2); | ||
D(i)=x(3); | ||
A(i)=x(4); | ||
R(i)=x(5); | ||
T(i)=x(6); | ||
H(i)=x(7); | ||
E(i)=x(8); | ||
|
||
H_diagnosticati(i)=x(9); | ||
Infetti_reali(i)=x(10); | ||
|
||
% Update Case Fatality Rate | ||
|
||
M(i)=E(i)/(S(1)-S(i)); | ||
P(i)=E(i)/((epsilon*r3+(theta+mu)*zeta)*(I(1)+S(1)-I(i)-S(i))/(r1*r3)+(theta+mu)*(A(1)-A(i))/r3); | ||
|
||
end | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% FINAL VALUES | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% Variables | ||
Sbar=S(length(t)); | ||
Ibar=I(length(t)); | ||
Dbar=D(length(t)); | ||
Abar=A(length(t)); | ||
Rbar=R(length(t)); | ||
Tbar=T(length(t)); | ||
Hbar=H(length(t)); | ||
Ebar=E(length(t)); | ||
|
||
% Case fatality rate | ||
Mbar=M(length(t)); | ||
Pbar=P(length(t)); | ||
|
||
% Case fatality rate from formulas | ||
Mbar1=Ebar/(S(1)-Sbar); | ||
Pbar1=Ebar/((epsilon*r3+(theta+mu)*zeta)*(I(1)+S(1)-Sbar-Ibar)/(r1*r3)+(theta+mu)*(A(1)-Abar)/r3); | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% FIGURES | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
figure | ||
plot(t,Infetti_reali,'b',t,I+D+A+R+T,'r',t,H,'g',t,E,'k') | ||
hold on | ||
plot(t,D+R+T+E+H_diagnosticati,'--b',t,D+R+T,'--r',t,H_diagnosticati,'--g') | ||
xlim([t(1) t(end)]) | ||
%title('Actual vs. Diagnosed Epidemic Evolution') | ||
xlabel('Time (days)') | ||
ylabel('Cases (fraction of the population)') | ||
legend({'Cumulative Infected','Current Total Infected', 'Recovered', 'Deaths','Diagnosed Cumulative Infected','Diagnosed Current Total Infected', 'Diagnosed Recovered'},'Location','east') | ||
grid | ||
|
||
if plotPDF==1 | ||
set(gcf, 'PaperUnits', 'centimeters'); | ||
set(gcf, 'PaperPosition', [0 0 24 16]); | ||
set(gcf, 'PaperSize', [24 16]); % dimension on x axis and y axis resp. | ||
print(gcf,'-dpdf', ['PanoramicaEpidemiaRealevsPercepita.pdf']) | ||
end | ||
% | ||
|
||
figure | ||
plot(t,I,'b',t,D,'c',t,A,'g',t,R,'m',t,T,'r') | ||
xlim([t(1) t(end)]) | ||
%title('Infected, different stages, Diagnosed vs. Non Diagnosed') | ||
xlabel('Time (days)') | ||
ylabel('Cases (fraction of the population)') | ||
legend({'Infected ND AS', 'Infected D AS', 'Infected ND S', 'Infected D S', 'Infected D IC'},'Location','northeast') | ||
grid | ||
|
||
if plotPDF==1 | ||
set(gcf, 'PaperUnits', 'centimeters'); | ||
set(gcf, 'PaperPosition', [0 0 24 16]); | ||
set(gcf, 'PaperSize', [24 16]); % dimension on x axis and y axis resp. | ||
print(gcf,'-dpdf', ['SuddivisioneInfetti.pdf']) | ||
end |
Oops, something went wrong.