Modified by: Steeve Laquitaine
Original reference:
Main paper to be cited (Di Wu et al., 2020)
@article{wu2020slotrefine,
title={Slotrefine: A fast non-autoregressive model for joint intent detection and slot filling},
author={Wu, Di and Ding, Liang and Lu, Fan and Xie, Jian},
booktitle={EMNLP},
year={2020}
}
- THUMT codebase
Conda
- Original setup:
setup.sh # create virtual env. and install dependencies
Train on atis
dataset:
train.atis.sh # train model
Train on snips
dataset:
train.snips.sh
- Configure parameters.yml and catalog.yml in conf/
- Run a pipeline:
- train:
# python models.py --pipeline train
- predict:
# python models.py --pipeline predict
- Shuffle corpus:
python thumt/scripts/shuffle_corpus.py --corpus "data/atis/train/data" --seed 0 --num_shards 1
..and other scripts:
- build_vocab
- checkpoint_averaging
- convert_old_model
- convert_vocab
- input_converter
- shuffle_corpus
- visualize
-
Specs original paper:
- decoding:
- single Tesla P40 GPU
- decoding:
-
Stats:
- inference latency: 3.02 ms
-
Stats:
- train: 4 hours (200 epochs)
- complete variabilisation of configurat in utils.get_params()