Deep Learning models inference performance test
- Ubuntu 16.04, GCE VM instance is recommended
- install
go version go1.11.2 linux/amd64
- Python version > 3.6.0
- Docker
make install-vegeta-attack
make build-all
# TensorFlow Serving saved model
python -m src.preparation.prepare_tf_model --model-name densenet121 --save-name densenet121_tf
# ONNX Serving model
python -m src.preparation.prepare_onnx_model --model-name densenet121 --save-name densenet121_onnx
# TensorFlow Serving
./scripts/run_tf_serving_optimized.sh densenet121_tf 8500 8501
# ONNX Serving
./scripts/run_onnx_serving.sh sanic onnxruntime densenet121_onnx_info.json 18501
# TensorFlow Serving inputs
python -m src.preparation.prepare_tf_inputs --model-info-path densenet121_tf_info.json --save-path densenet121_tf_payload.json
# ONNX Serving inputs
python -m src.preparation.prepare_onnx_inputs --model-info-path densenet121_onnx_info.json --save-path densenet121_onnx_payload.json
# TensorFlow Serving load test
./scripts/vegeta_attack.sh tensorflow densenet121_tf 8501 ./data/densenet121_tf_payload.json 10 5
# ONNX Serving load test
./scripts/vegeta_attack.sh onnx densenet121 18501 ./data/densenet121_onnx_payload.json 10 5
onnxruntime
conflicts withpytorch
whenconda
env is not used
tensorflow-serving
gRPC client- performance test on local
- performance test on k8s