Skip to content

Commit

Permalink
Merge pull request #26 from ktonal/develop
Browse files Browse the repository at this point in the history
v0.2.5
  • Loading branch information
antoinedaurat authored Jun 22, 2021
2 parents 8a660ca + a062e1c commit 3194581
Show file tree
Hide file tree
Showing 4 changed files with 7 additions and 7 deletions.
2 changes: 1 addition & 1 deletion mimikit/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = '0.2.4'
__version__ = '0.2.5'

from . import audios
from . import connectors
Expand Down
8 changes: 4 additions & 4 deletions mimikit/data/feature.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,8 @@ def encode(self, inputs):
-------
"""
if hasattr(super(), 'encoders'):
inputs = super().encoders[type(inputs)](inputs)
if hasattr(super(type(self), self), 'encoders'):
inputs = super(type(self), self).encoders[type(inputs)](inputs)
return self.encoders[type(inputs)](inputs)

def decode(self, inputs):
Expand All @@ -106,8 +106,8 @@ def decode(self, inputs):
"""
inputs = self.decoders[type(inputs)](inputs)
if hasattr(super(), 'decoders'):
inputs = super().decoders[type(inputs)](inputs)
if hasattr(super(type(self), self), 'decoders'):
inputs = super(type(self), self).decoders[type(inputs)](inputs)
return inputs

def load(self, path):
Expand Down
2 changes: 1 addition & 1 deletion mimikit/models/s2s_lstm.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def demo():
# how many examples are used pro training steps
batch_size = 16
# the learning rate
max_lr = 1e-3
max_lr = 3e-4
# betas control how fast the network changes its 'learning course'.
# generally, betas should be close but smaller than 1. and be balanced with the batch_size :
# the smaller the batch, the higher the betas 'could be'.
Expand Down
2 changes: 1 addition & 1 deletion mimikit/models/sample_rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ class SampleRNNData(IData):

@classmethod
def schema(cls, sr=22050, emphasis=0., q_levels=256):
return {'qx': MuLawSignal(sr=sr, emphasis=emphasis, q_levels=q_levels)}
return {'qx': MuLawSignal(sr=sr, emphasis=emphasis, q_levels=q_levels, normalize=True)}

def batch_signature(self, stage='fit'):
batch_seq_len, frame_sizes = tuple(getattr(self, key) for key in ["batch_seq_len", "frame_sizes"])
Expand Down

0 comments on commit 3194581

Please sign in to comment.