Skip to content

knoxai/gait

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ADES - AI Development Experience System

GAIT is not gait, It's AI in the GIT.

Go Version License Docker Kubernetes

πŸš€ Overview

ADES (AI Development Experience System) is a revolutionary AI-powered platform that transforms how developers interact with their codebases. By combining advanced machine learning, semantic analysis, and intelligent automation, ADES provides unprecedented insights into development patterns, code quality, and team collaboration.

🎯 What Makes ADES Special?

  • 🧠 AI-Powered Analysis: Advanced ML algorithms analyze your entire codebase to extract patterns, detect anomalies, and predict trends
  • πŸ” Semantic Understanding: Deep semantic analysis of commits, code changes, and development intent
  • 🀝 Real-time Collaboration: Live collaboration features with presence tracking and shared analysis
  • 🎨 Interactive Visualizations: Rich dashboards and charts for code metrics, team activity, and quality trends
  • πŸ”Œ IDE Integration: Seamless integration with popular IDEs for real-time code assistance
  • πŸ“Š Comprehensive Analytics: Detailed insights into code quality, technical debt, and team productivity
  • πŸš€ Production Ready: Enterprise-grade deployment with Docker, Kubernetes, and CI/CD pipelines

πŸ“‹ Table of Contents

✨ Features

🧠 Core AI Capabilities

Semantic Analysis Engine

  • Intent Classification: Automatically categorizes commits by development intent (feature, bugfix, refactor, etc.)
  • Topic Modeling: Extracts key topics and themes from code changes
  • Similarity Matching: Finds similar implementations and patterns across your codebase
  • Context Understanding: Deep understanding of code context and relationships

Machine Learning Pipeline

  • Pattern Recognition: Identifies reusable code patterns and design patterns
  • Anomaly Detection: Detects unusual code changes, potential bugs, and security issues
  • Trend Prediction: Predicts development trends, technical debt, and quality metrics
  • Quality Assessment: Automated code quality scoring and improvement suggestions

Knowledge Graph System

  • Relationship Mapping: Maps relationships between code components, developers, and concepts
  • Knowledge Discovery: Discovers hidden connections and dependencies
  • Graph Queries: Advanced querying capabilities for complex code relationships
  • Insight Generation: Generates actionable insights from code relationships

πŸ”§ Development Tools

Automated Code Review

  • Multi-dimensional Analysis: Quality, security, performance, and pattern analysis
  • Intelligent Suggestions: ML-powered code improvement recommendations
  • Severity Classification: Automatic prioritization of issues and suggestions
  • Integration Ready: Works with existing CI/CD pipelines

IDE Integration

  • Real-time Analysis: Live code analysis as you type
  • Smart Completion: AI-powered code completion with context awareness
  • Inline Hints: Intelligent suggestions and warnings directly in your editor
  • Multi-IDE Support: VSCode, IntelliJ IDEA, Vim, Emacs, Sublime Text

Collaboration Features

  • Real-time Presence: See who's working on what in real-time
  • Shared Analysis: Collaborate on code analysis and insights
  • Team Insights: Team productivity and collaboration metrics
  • Knowledge Sharing: Share patterns and insights across the team

πŸ“Š Analytics & Visualization

Interactive Dashboards

  • 14+ Widget Types: Charts, tables, metrics, gauges, heatmaps, and more
  • Real-time Updates: Live data updates via WebSocket connections
  • Customizable Layouts: Drag-and-drop dashboard creation
  • Export Capabilities: Export dashboards as PNG, PDF, CSV, or JSON

Comprehensive Metrics

  • Code Quality Trends: Track quality improvements over time
  • Team Activity: Developer productivity and contribution analysis
  • Technical Debt: Identify and track technical debt accumulation
  • Performance Insights: Code performance and optimization opportunities

πŸ”Œ Integration Ecosystem

MCP (Model Context Protocol) Support

  • AI Assistant Integration: Works with Cursor, Claude, ChatGPT, and other AI assistants
  • 11 Specialized Tools: Search experiences, extract patterns, analyze semantics, and more
  • Context Provision: Rich context for AI-powered development assistance
  • WebSocket & HTTP: Flexible communication protocols
  • Cursor Integration: Seamless integration with Cursor IDE for enhanced AI coding assistance

API-First Design

  • RESTful APIs: 20+ endpoints for all ADES functionality
  • GraphQL Support: Advanced querying capabilities
  • Webhook Integration: Real-time notifications and integrations
  • Rate Limiting: Enterprise-grade API protection

πŸ— Architecture

ADES follows a modular, microservices-inspired architecture designed for scalability and maintainability:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    ADES Architecture                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Web UI  β”‚  IDE Plugins  β”‚  Mobile App  β”‚  API Clients      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    API Gateway                              β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Core Services                                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚   Semantic  β”‚     ML      β”‚ Knowledge   β”‚    MCP      β”‚  β”‚
β”‚  β”‚   Analysis  β”‚   Engine    β”‚   Graph     β”‚   Server    β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Integration Layer                                          β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚     Git     β”‚    IDE      β”‚Collaborationβ”‚Visualizationβ”‚  β”‚
β”‚  β”‚ Integration β”‚Integration  β”‚   Server    β”‚  Dashboard  β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Data Layer                                                 β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚   SQLite    β”‚   Vector    β”‚    Redis    β”‚ File System β”‚  β”‚
β”‚  β”‚  Database   β”‚  Database   β”‚    Cache    β”‚   Storage   β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

  • Semantic Analysis Engine: Processes code semantics and intent
  • ML Pipeline: Pattern recognition, anomaly detection, trend prediction
  • Knowledge Graph: Relationship mapping and insight generation
  • MCP Server: AI assistant integration and context provision
  • IDE Integration: Real-time editor integration and assistance
  • Collaboration Server: Real-time team collaboration features
  • Visualization Dashboard: Interactive charts and analytics

πŸš€ Quick Start

Prerequisites

  • Go 1.22+
  • Git
  • Docker (optional, for containerized deployment)
  • Node.js 18+ (for web UI development)

1. Clone and Build

# Clone the repository
git clone https://github.com/knoxai/gait.git
cd gait

# Build the application
go build -o ades .

# Run ADES
./ades -port 8080

2. Access ADES

Open your browser and navigate to:

3. Analyze Your First Repository

# Initialize ADES with your repository
curl -X POST "http://localhost:8080/api/repositories" \
  -H "Content-Type: application/json" \
  -d '{"path": "/path/to/your/repo", "name": "my-project"}'

# Start comprehensive analysis
curl -X POST "http://localhost:8080/api/ades/analyze/comprehensive" \
  -H "Content-Type: application/json" \
  -d '{"async": false}'

4. Enable Cursor MCP Integration

# Start the MCP server for Cursor integration
./start-mcp-server.sh

# Test the integration
./test-mcp-integration.sh

# The workspace is pre-configured for Cursor MCP integration
# Restart Cursor to activate the ADES tools

Available MCP Tools in Cursor:

  • search_development_experience - Find similar development patterns
  • get_similar_implementations - Discover related code implementations
  • extract_reusable_patterns - Identify reusable code patterns
  • analyze_commit_semantics - Understand commit intent and meaning
  • get_commit_details - Get comprehensive commit information
  • get_commit_history - Retrieve filtered commit history
  • And 5 more powerful analysis tools!

See MCP_INTEGRATION.md for detailed setup instructions.

πŸ“¦ Installation

Option 1: Binary Installation

# Download the latest release
wget https://github.com/knoxai/gait/releases/latest/download/ades-linux-amd64.tar.gz

# Extract and install
tar -xzf ades-linux-amd64.tar.gz
sudo mv ades /usr/local/bin/

# Verify installation
ades --version

Option 2: Docker Installation

# Pull the Docker image
docker pull ghcr.io/knoxai/ades:latest

# Run with Docker
docker run -d \
  --name ades \
  -p 8080:8080 \
  -p 8081:8081 \
  -p 8082:8082 \
  -p 8083:8083 \
  -v $(pwd)/data:/app/data \
  -v $(pwd)/repositories:/app/repositories:ro \
  ghcr.io/knoxai/ades:latest

Option 3: Docker Compose (Recommended for Development)

# Clone the repository
git clone https://github.com/knoxai/gait.git
cd gait

# Start all services
docker-compose up -d

# Services will be available at:
# - ADES: http://localhost:8080
# - Redis: localhost:6379
# - PostgreSQL: localhost:5432
# - Prometheus: http://localhost:9090
# - Grafana: http://localhost:3000

Option 4: Kubernetes Deployment

# Deploy to Kubernetes
kubectl apply -f deployments/kubernetes/

# Or use the automated deployment script
./deployments/scripts/deploy.sh

βš™οΈ Configuration

ADES uses a JSON configuration file located at data/ades-config.json. Here's a sample configuration:

{
  "server": {
    "port": 8080,
    "host": "0.0.0.0"
  },
  "semantic": {
    "enabled": true,
    "embedding_dimension": 384,
    "similarity_threshold": 0.7
  },
  "ml": {
    "enabled": true,
    "pattern_recognition_engine": "advanced",
    "classification_threshold": 0.7,
    "anomaly_detection_enabled": true,
    "trend_prediction_enabled": true
  },
  "ide_integration": {
    "enabled": true,
    "port": 8081,
    "supported_ides": ["vscode", "intellij", "vim", "emacs", "sublime"],
    "enable_real_time_analysis": true,
    "enable_code_completion": true
  },
  "collaboration": {
    "enabled": true,
    "websocket_port": 8082,
    "max_concurrent_users": 50,
    "enable_shared_analysis": true
  },
  "visualization": {
    "enabled": true,
    "dashboard_port": 8083,
    "enable_real_time_charts": true,
    "chart_types": ["line", "bar", "pie", "scatter", "heatmap", "network"]
  }
}

Environment Variables

Variable Description Default
ADES_PORT Main application port 8080
ADES_DATA_DIR Data directory path ./data
ADES_CONFIG_PATH Configuration file path ./data/ades-config.json
ADES_LOG_LEVEL Logging level info
ADES_ENABLE_METRICS Enable metrics collection true

πŸ“š API Documentation

ADES provides a comprehensive RESTful API with 20+ endpoints:

Core Endpoints

# Repository Management
GET    /api/repositories          # List repositories
POST   /api/repositories          # Add repository
GET    /api/repositories/{id}     # Get repository details

# Analysis
POST   /api/ades/analyze/comprehensive  # Comprehensive analysis
GET    /api/ades/analyze/progress       # Analysis progress
GET    /api/commits                     # List commits
GET    /api/commits/{hash}              # Get commit details

# Semantic Analysis
POST   /api/semantic/analyze      # Analyze semantics
GET    /api/semantic/similar      # Find similar commits
POST   /api/semantic/search       # Semantic search

# Machine Learning
GET    /api/ml/patterns           # Get detected patterns
GET    /api/ml/anomalies          # Get anomalies
GET    /api/ml/trends             # Get trend predictions

# Knowledge Graph
GET    /api/knowledge/nodes       # Get graph nodes
GET    /api/knowledge/relationships  # Get relationships
POST   /api/knowledge/query       # Query knowledge graph

MCP Tools

ADES provides 6 specialized MCP tools for AI assistant integration:

  1. search_development_experience - Search similar development experiences
  2. get_similar_implementations - Find similar implementations by commit
  3. extract_reusable_patterns - Extract reusable code patterns
  4. analyze_commit_semantics - Detailed semantic analysis of commits
  5. query_knowledge_graph - Query development knowledge graph
  6. get_development_insights - Comprehensive development insights

πŸ”Œ IDE Integration

Visual Studio Code

# Install the ADES extension (coming soon)
code --install-extension ades.ades-vscode

# Or install manually from .vsix file
code --install-extension ades-vscode-1.0.0.vsix

IntelliJ IDEA

# Install from JetBrains Marketplace (coming soon)
# Or install manually from .jar file

Vim/Neovim

" Add to your .vimrc or init.vim
Plug 'knoxai/ades-vim'

Configuration

All IDE plugins connect to the ADES server running on port 8081:

{
  "ades.server.url": "http://localhost:8081",
  "ades.realtime.enabled": true,
  "ades.completion.enabled": true,
  "ades.hints.enabled": true
}

πŸš€ Deployment

Production Deployment with Kubernetes

# 1. Build and push Docker image
docker build -t your-registry/ades:latest .
docker push your-registry/ades:latest

# 2. Update deployment configuration
sed -i 's|image: ades:latest|image: your-registry/ades:latest|g' deployments/kubernetes/deployment.yaml

# 3. Deploy to Kubernetes
kubectl apply -f deployments/kubernetes/

# 4. Verify deployment
kubectl get pods -n ades-system
kubectl get services -n ades-system

Scaling Configuration

# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ades-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: ades-deployment
  minReplicas: 3
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70

Monitoring and Observability

ADES includes comprehensive monitoring:

  • Prometheus Metrics: Available at /metrics endpoint
  • Health Checks: Available at /api/health endpoint
  • Structured Logging: JSON format with configurable levels
  • Performance Metrics: Response times, throughput, error rates
  • Business Metrics: Analysis counts, user activity, system usage

πŸ§ͺ Development

Setting up Development Environment

# Clone the repository
git clone https://github.com/knoxai/gait.git
cd gait

# Install dependencies
go mod download

# Run tests
go test ./...

# Run with hot reload (requires air)
go install github.com/cosmtrek/air@latest
air

# Build for development
go build -o ades-dev .
./ades-dev -port 8080

Project Structure

gait/
β”œβ”€β”€ cmd/                    # Command-line interfaces
β”œβ”€β”€ internal/               # Internal packages
β”‚   β”œβ”€β”€ ades/              # Core ADES functionality
β”‚   β”‚   β”œβ”€β”€ analyzer/      # Code analysis
β”‚   β”‚   β”œβ”€β”€ batch/         # Batch processing
β”‚   β”‚   β”œβ”€β”€ collaboration/ # Real-time collaboration
β”‚   β”‚   β”œβ”€β”€ config/        # Configuration management
β”‚   β”‚   β”œβ”€β”€ ide/           # IDE integration
β”‚   β”‚   β”œβ”€β”€ knowledge/     # Knowledge graph
β”‚   β”‚   β”œβ”€β”€ mcp/           # MCP server
β”‚   β”‚   β”œβ”€β”€ ml/            # Machine learning
β”‚   β”‚   β”œβ”€β”€ models/        # Data models
β”‚   β”‚   β”œβ”€β”€ monitoring/    # Monitoring and metrics
β”‚   β”‚   β”œβ”€β”€ patterns/      # Pattern extraction
β”‚   β”‚   β”œβ”€β”€ performance/   # Performance optimization
β”‚   β”‚   β”œβ”€β”€ review/        # Code review
β”‚   β”‚   β”œβ”€β”€ security/      # Security features
β”‚   β”‚   β”œβ”€β”€ semantic/      # Semantic analysis
β”‚   β”‚   β”œβ”€β”€ storage/       # Data storage
β”‚   β”‚   β”œβ”€β”€ vector/        # Vector operations
β”‚   β”‚   └── visualization/ # Dashboard and charts
β”‚   β”œβ”€β”€ api/               # API handlers
β”‚   β”œβ”€β”€ git/               # Git integration
β”‚   └── web/               # Web interface
β”œβ”€β”€ pkg/                   # Public packages
β”œβ”€β”€ deployments/           # Deployment configurations
β”‚   β”œβ”€β”€ kubernetes/        # Kubernetes manifests
β”‚   β”œβ”€β”€ scripts/           # Deployment scripts
β”‚   └── docker/            # Docker configurations
β”œβ”€β”€ static/                # Static web assets
β”œβ”€β”€ templates/             # HTML templates
└── docs/                  # Documentation

Running Tests

# Run all tests
go test ./...

# Run tests with coverage
go test -cover ./...

# Run specific test package
go test ./internal/ades/semantic/

# Run integration tests
go test -tags=integration ./...

# Benchmark tests
go test -bench=. ./...

🀝 Contributing

We welcome contributions to ADES! Please see our Contributing Guide for details.

Development Workflow

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Code Standards

  • Go: Follow standard Go conventions and use gofmt
  • Testing: Maintain >80% test coverage
  • Documentation: Document all public APIs
  • Commits: Use conventional commit messages

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Go Community for the excellent ecosystem
  • ChromaDB for vector database capabilities
  • Prometheus for monitoring and metrics
  • Kubernetes for orchestration platform
  • All Contributors who have helped build ADES

πŸ“ž Support


ADES - Transforming Development Experience with AI πŸš€

Made with ❀️ by the ADES Team

About

GAIT - AI in motion within Git | Where Every Commit Becomes Wisdom

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published