This is a video diffusion training code designed to replicate the SVD multi-view approach described in the paper Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets. The training codebase, provided as a minimal working example, relies entirely on diffusers and accelerate. The SVD-MV model is conditioned on a single 3*576*576 input image
and an elevation angle
to generate 21 views of the object. Training is conducted on a subset of the Objaverse dataset.
You can prepare the environment using environment.yml
.
Or manually install as follows:
Environment
``` bash conda create -n svd_mv python=3.12 conda install pytorch=2.2.2 torchvision=0.17.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y conda install -c conda-forge transformers=4.39.3 -y conda install -c conda-forge diffusers=0.27.2 -y conda install -c conda-forge accelerate=0.29.1 -y conda install conda-forge::wandb -y conda install conda-forge::deepspeed -y conda install -c conda-forge tensorboard pip install lpips==0.1.4 pip install moviepy==1.0.3 ```After installing the environment, you could run the following command to train the model.
python -m accelerate.commands.launch --config_file accelerate_config/deepspeed_zero_2_one_gpu.yaml main.py train train_config/train_local_svd_mv.yaml
We provide a dummy dataset in the dummy_objaverse
folder and a dummy meta file svd_meta.jsonl
for running our repository. The formats are as following:
dummy_objaverse
├── 001
│ ├── 000.jpg
│ ├── 001.jpg
│ ├── ...
│ └── 020.jpg
├── 002
│...
The svd_meta.jsonl
file is structured as follows, containing the image path and elevation angle for each image.
{"image_path": ["001/000.png", "001/001.png", "001/002.png", "001/003.png", "001/004.png", "001/005.png", "001/006.png", "001/007.png", "001/008.png", "001/009.png", "001/010.png", "001/011.png", "001/012.png", "001/013.png", "001/014.png", "001/015.png", "001/016.png", "001/017.png", "001/018.png", "001/019.png", "001/020.png"], "elevation": [21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518, 21.482518]}
We may release the model checkpoint and dataset in the future.
This project is supervised by Ziwei Liu. We would like to thank Liang Pan, Chenyang Si, and Jiaxiang Tang for their invaluable advice and support. Additionally, we thank Ziang Cao for his contribution to data preparation.