A library for Simple & Efficient data access in Scala and Scala.js
Add the following dependency to your project's build file.
For Scala 2.11.x and 2.12.x:
"com.47deg" %% "fetch" % "1.2.1"
Or, if using Scala.js (0.6.x):
"com.47deg" %%% "fetch" % "1.2.1"
Fetch is a library for making access to data both simple and efficient. Fetch is especially useful when querying data that has a latency cost, such as databases or web services.
To tell Fetch how to get the data you want, you must implement the DataSource
typeclass. Data sources have fetch
and batch
methods that define how to fetch such a piece of data.
Data Sources take two type parameters:
Identity
is a type that has enough information to fetch the dataResult
is the type of data we want to fetch
import cats.data.NonEmptyList
import cats.effect.Concurrent
trait DataSource[F[_], Identity, Result]{
def data: Data[Identity, Result]
def CF: Concurrent[F]
def fetch(id: Identity): F[Option[Result]]
def batch(ids: NonEmptyList[Identity]): F[Map[Identity, Result]]
}
Returning Concurrent
instances from the fetch methods allows us to specify if the fetch must run synchronously or asynchronously, and use all the goodies available in cats
and cats-effect
.
We'll implement a dummy data source that can convert integers to strings. For convenience, we define a fetchString
function that lifts identities (Int
in our dummy data source) to a Fetch
.
import cats._
import cats.data.NonEmptyList
import cats.effect._
import cats.instances.list._
import cats.implicits._
import cats.syntax.all._
import fetch._
def latency[F[_] : Concurrent](milis: Long): F[Unit] =
Concurrent[F].delay(Thread.sleep(milis))
object ToString extends Data[Int, String] {
def name = "To String"
def source[F[_] : Concurrent]: DataSource[F, Int, String] = new DataSource[F, Int, String]{
override def data = ToString
override def CF = Concurrent[F]
override def fetch(id: Int): F[Option[String]] = for {
_ <- CF.delay(println(s"--> [${Thread.currentThread.getId}] One ToString $id"))
_ <- latency(100)
_ <- CF.delay(println(s"<-- [${Thread.currentThread.getId}] One ToString $id"))
} yield Option(id.toString)
override def batch(ids: NonEmptyList[Int]): F[Map[Int, String]] = for {
_ <- CF.delay(println(s"--> [${Thread.currentThread.getId}] Batch ToString $ids"))
_ <- latency(100)
_ <- CF.delay(println(s"<-- [${Thread.currentThread.getId}] Batch ToString $ids"))
} yield ids.toList.map(i => (i, i.toString)).toMap
}
}
def fetchString[F[_] : Concurrent](n: Int): Fetch[F, String] =
Fetch(n, ToString.source)
Since Fetch
relies on Concurrent
from the cats-effect
library, we'll need a runtime for executing our effects. We'll be using IO
from cats-effect
to run fetches, but you can use any type that has a Concurrent
instance.
For executing IO
, we need a ContextShift[IO]
used for running IO
instances and a Timer[IO]
that is used for scheduling. Let's go ahead and create them. We'll use a java.util.concurrent.ScheduledThreadPoolExecutor
with a couple of threads to run our fetches.
import java.util.concurrent._
import scala.concurrent.ExecutionContext
val executor = new ScheduledThreadPoolExecutor(4)
val executionContext: ExecutionContext = ExecutionContext.fromExecutor(executor)
implicit val timer: Timer[IO] = IO.timer(executionContext)
implicit val cs: ContextShift[IO] = IO.contextShift(executionContext)
Now that we can convert Int
values to Fetch[F, String]
, let's try creating a fetch.
def fetchOne[F[_] : Concurrent]: Fetch[F, String] =
fetchString(1)
Let's run it and wait for the fetch to complete. We'll use IO#unsafeRunTimed
for testing purposes, which will run an IO[A]
to Option[A]
and return None
if it didn't complete in time:
import scala.concurrent.duration._
// import scala.concurrent.duration._
Fetch.run[IO](fetchOne).unsafeRunTimed(5.seconds)
// --> [134] One ToString 1
// <-- [134] One ToString 1
// res0: Option[String] = Some(1)
As you can see in the previous example, the ToStringSource
is queried once to get the value of 1.
Multiple fetches to the same data source are automatically batched. For illustrating this, we are going to compose three independent fetch results as a tuple.
def fetchThree[F[_] : Concurrent]: Fetch[F, (String, String, String)] =
(fetchString(1), fetchString(2), fetchString(3)).tupled
When executing the above fetch, note how the three identities get batched, and the data source is only queried once.
Fetch.run[IO](fetchThree).unsafeRunTimed(5.seconds)
// --> [134] Batch ToString NonEmptyList(1, 2, 3)
// <-- [134] Batch ToString NonEmptyList(1, 2, 3)
// res1: Option[(String, String, String)] = Some((1,2,3))
Note that the DataSource#batch
method is not mandatory. It will be implemented in terms of DataSource#fetch
if you don't provide an implementation.
object UnbatchedToString extends Data[Int, String] {
def name = "Unbatched to string"
def source[F[_] : Concurrent] = new DataSource[F, Int, String] {
override def data = UnbatchedToString
override def CF = Concurrent[F]
override def fetch(id: Int): F[Option[String]] =
CF.delay(println(s"--> [${Thread.currentThread.getId}] One UnbatchedToString $id")) >>
latency(100) >>
CF.delay(println(s"<-- [${Thread.currentThread.getId}] One UnbatchedToString $id")) >>
CF.pure(Option(id.toString))
}
}
def unbatchedString[F[_] : Concurrent](n: Int): Fetch[F, String] =
Fetch(n, UnbatchedToString.source)
Let's create a tuple of unbatched string requests.
def fetchUnbatchedThree[F[_] : Concurrent]: Fetch[F, (String, String, String)] =
(unbatchedString(1), unbatchedString(2), unbatchedString(3)).tupled
When executing the above fetch, note how the three identities get requested in parallel. You can override batch
to execute queries sequentially if you need to.
Fetch.run[IO](fetchUnbatchedThree).unsafeRunTimed(5.seconds)
// --> [134] One UnbatchedToString 1
// --> [136] One UnbatchedToString 2
// --> [137] One UnbatchedToString 3
// <-- [134] One UnbatchedToString 1
// <-- [136] One UnbatchedToString 2
// <-- [137] One UnbatchedToString 3
// res2: Option[(String, String, String)] = Some((1,2,3))
If we combine two independent fetches from different data sources, the fetches can be run in parallel. First, let's add a data source that fetches a string's size.
object Length extends Data[String, Int] {
def name = "Length"
def source[F[_] : Concurrent] = new DataSource[F, String, Int] {
override def data = Length
override def CF = Concurrent[F]
override def fetch(id: String): F[Option[Int]] = for {
_ <- CF.delay(println(s"--> [${Thread.currentThread.getId}] One Length $id"))
_ <- latency(100)
_ <- CF.delay(println(s"<-- [${Thread.currentThread.getId}] One Length $id"))
} yield Option(id.size)
override def batch(ids: NonEmptyList[String]): F[Map[String, Int]] = for {
_ <- CF.delay(println(s"--> [${Thread.currentThread.getId}] Batch Length $ids"))
_ <- latency(100)
_ <- CF.delay(println(s"<-- [${Thread.currentThread.getId}] Batch Length $ids"))
} yield ids.toList.map(i => (i, i.size)).toMap
}
}
def fetchLength[F[_] : Concurrent](s: String): Fetch[F, Int] =
Fetch(s, Length.source)
And now we can easily receive data from the two sources in a single fetch.
def fetchMulti[F[_] : Concurrent]: Fetch[F, (String, Int)] =
(fetchString(1), fetchLength("one")).tupled
Note how the two independent data fetches run in parallel, minimizing the latency cost of querying the two data sources.
Fetch.run[IO](fetchMulti).unsafeRunTimed(5.seconds)
// --> [134] One ToString 1
// --> [135] One Length one
// <-- [134] One ToString 1
// <-- [135] One Length one
// res3: Option[(String, Int)] = Some((1,3))
When fetching an identity, subsequent fetches for the same identity are cached. Let's try creating a fetch that asks for the same identity twice.
import cats.syntax.all._
def fetchTwice[F[_] : Concurrent]: Fetch[F, (String, String)] = for {
one <- fetchString(1)
two <- fetchString(1)
} yield (one, two)
While running it, notice that the data source is only queried once. The next time the identity is requested, it's served from the cache.
Fetch.run[IO](fetchTwice).unsafeRunTimed(5.seconds)
// --> [136] One ToString 1
// <-- [136] One ToString 1
// res4: Option[(String, String)] = Some((1,1))
For more in-depth information, take a look at our documentation.
If you wish to add your library here, please consider a PR to include it in the list below.
Fetch is designed and developed by 47 Degrees
Copyright (C) 2016-2019 47 Degrees. http://47deg.com