Skip to content

jrjang/docker-gitlab

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Docker Repository on Quay.io

Deploy to Tutum

sameersbn/gitlab:8.7.2

Introduction

Dockerfile to build a GitLab container image.

Contributing

If you find this image useful here's how you can help:

  • Send a Pull Request with your awesome new features and bug fixes
  • Help new users with Issues they may encounter
  • Support the development of this image with a donation

Issues

Docker is a relatively new project and is active being developed and tested by a thriving community of developers and testers and every release of docker features many enhancements and bugfixes.

Given the nature of the development and release cycle it is very important that you have the latest version of docker installed because any issue that you encounter might have already been fixed with a newer docker release.

Install the most recent version of the Docker Engine for your platform using the official Docker releases, which can also be installed using:

wget -qO- https://get.docker.com/ | sh

Fedora and RHEL/CentOS users should try disabling selinux with setenforce 0 and check if resolves the issue. If it does than there is not much that I can help you with. You can either stick with selinux disabled (not recommended by redhat) or switch to using ubuntu.

You may also set DEBUG=true to enable debugging of the entrypoint script, which could help you pin point any configuration issues.

If using the latest docker version and/or disabling selinux does not fix the issue then please file a issue request on the issues page.

In your issue report please make sure you provide the following information:

  • The host distribution and release version.
  • Output of the docker version command
  • Output of the docker info command
  • The docker run command you used to run the image (mask out the sensitive bits).

Prerequisites

Your docker host needs to have 1GB or more of available RAM to run GitLab. Please refer to the GitLab hardware requirements documentation for additional information.

Installation

Automated builds of the image are available on Dockerhub and is the recommended method of installation.

Note: Builds are also available on Quay.io

docker pull sameersbn/gitlab:8.7.2

You can also pull the latest tag which is built from the repository HEAD

docker pull sameersbn/gitlab:latest

Alternatively you can build the image locally.

docker build -t sameersbn/gitlab github.com/sameersbn/docker-gitlab

Quick Start

The quickest way to get started is using docker-compose.

wget https://raw.githubusercontent.com/sameersbn/docker-gitlab/master/docker-compose.yml

Generate a random string and assign to GITLAB_SECRETS_DB_KEY_BASE environment variable. Once set you should not change this value and ensure you backup this value.

Tip: You can generate a random string using pwgen -Bsv1 64 and assign it as the value of GITLAB_SECRETS_DB_KEY_BASE.

Start GitLab using:

docker-compose up

Alternatively, you can manually launch the gitlab container and the supporting postgresql and redis containers by following this three step guide.

Step 1. Launch a postgresql container

docker run --name gitlab-postgresql -d \
    --env 'DB_NAME=gitlabhq_production' \
    --env 'DB_USER=gitlab' --env 'DB_PASS=password' \
    --env 'DB_EXTENSION=pg_trgm' \
    --volume /srv/docker/gitlab/postgresql:/var/lib/postgresql \
    sameersbn/postgresql:9.4-21

Step 2. Launch a redis container

docker run --name gitlab-redis -d \
    --volume /srv/docker/gitlab/redis:/var/lib/redis \
    sameersbn/redis:latest

Step 3. Launch the gitlab container

docker run --name gitlab -d \
    --link gitlab-postgresql:postgresql --link gitlab-redis:redisio \
    --publish 10022:22 --publish 10080:80 \
    --env 'GITLAB_PORT=10080' --env 'GITLAB_SSH_PORT=10022' \
    --env 'GITLAB_SECRETS_DB_KEY_BASE=long-and-random-alpha-numeric-string' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Please refer to Available Configuration Parameters to understand GITLAB_PORT and other configuration options

NOTE: Please allow a couple of minutes for the GitLab application to start.

Point your browser to http://localhost:10080 and set a password for the root user account.

You should now have the GitLab application up and ready for testing. If you want to use this image in production the please read on.

The rest of the document will use the docker command line. You can quite simply adapt your configuration into a docker-compose.yml file if you wish to do so.

Configuration

Data Store

GitLab is a code hosting software and as such you don't want to lose your code when the docker container is stopped/deleted. To avoid losing any data, you should mount a volume at,

  • /home/git/data

Note that if you are using the docker-compose approach, this has already been done for you.

SELinux users are also required to change the security context of the mount point so that it plays nicely with selinux.

mkdir -p /srv/docker/gitlab/gitlab
sudo chcon -Rt svirt_sandbox_file_t /srv/docker/gitlab/gitlab

Volumes can be mounted in docker by specifying the -v option in the docker run command.

docker run --name gitlab -d \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Database

GitLab uses a database backend to store its data. You can configure this image to use either MySQL or PostgreSQL.

Note: GitLab HQ recommends using PostgreSQL over MySQL

PostgreSQL

External PostgreSQL Server

The image also supports using an external PostgreSQL Server. This is also controlled via environment variables.

CREATE ROLE gitlab with LOGIN CREATEDB PASSWORD 'password';
CREATE DATABASE gitlabhq_production;
GRANT ALL PRIVILEGES ON DATABASE gitlabhq_production to gitlab;

Additionally since GitLab 8.6.0 the pg_trgm extension should also be loaded for the gitlabhq_production database.

We are now ready to start the GitLab application.

Assuming that the PostgreSQL server host is 192.168.1.100

docker run --name gitlab -d \
    --env 'DB_ADAPTER=postgresql' --env 'DB_HOST=192.168.1.100' \
    --env 'DB_NAME=gitlabhq_production' \
    --env 'DB_USER=gitlab' --env 'DB_PASS=password' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Linking to PostgreSQL Container

You can link this image with a postgresql container for the database requirements. The alias of the postgresql server container should be set to postgresql while linking with the gitlab image.

If a postgresql container is linked, only the DB_ADAPTER, DB_HOST and DB_PORT settings are automatically retrieved using the linkage. You may still need to set other database connection parameters such as the DB_NAME, DB_USER, DB_PASS and so on.

To illustrate linking with a postgresql container, we will use the sameersbn/postgresql image. When using postgresql image in production you should mount a volume for the postgresql data store. Please refer the README of docker-postgresql for details.

First, lets pull the postgresql image from the docker index.

docker pull sameersbn/postgresql:9.4-21

For data persistence lets create a store for the postgresql and start the container.

SELinux users are also required to change the security context of the mount point so that it plays nicely with selinux.

mkdir -p /srv/docker/gitlab/postgresql
sudo chcon -Rt svirt_sandbox_file_t /srv/docker/gitlab/postgresql

The run command looks like this.

docker run --name gitlab-postgresql -d \
    --env 'DB_NAME=gitlabhq_production' \
    --env 'DB_USER=gitlab' --env 'DB_PASS=password' \
    --env 'DB_EXTENSION=pg_trgm' \
    --volume /srv/docker/gitlab/postgresql:/var/lib/postgresql \
    sameersbn/postgresql:9.4-21

The above command will create a database named gitlabhq_production and also create a user named gitlab with the password password with access to the gitlabhq_production database.

We are now ready to start the GitLab application.

docker run --name gitlab -d --link gitlab-postgresql:postgresql \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Here the image will also automatically fetch the DB_NAME, DB_USER and DB_PASS variables from the postgresql container as they are specified in the docker run command for the postgresql container. This is made possible using the magic of docker links and works with the following images:

MySQL

Internal MySQL Server

The internal mysql server has been removed from the image. Please use a linked mysql container or specify a connection to a external mysql server.

If you have been using the internal mysql server follow these instructions to migrate to a linked mysql container:

Assuming that your mysql data is available at /srv/docker/gitlab/mysql

docker run --name gitlab-mysql -d \
    --volume /srv/docker/gitlab/mysql:/var/lib/mysql \
    sameersbn/mysql:latest

This will start a mysql container with your existing mysql data. Now login to the mysql container and create a user for the existing gitlabhq_production database.

All you need to do now is link this mysql container to the gitlab ci container using the --link gitlab-mysql:mysql option and provide the DB_NAME, DB_USER and DB_PASS parameters.

Refer to Linking to MySQL Container for more information.

External MySQL Server

The image can be configured to use an external MySQL database. The database configuration should be specified using environment variables while starting the GitLab image.

Before you start the GitLab image create user and database for gitlab.

CREATE USER 'gitlab'@'%.%.%.%' IDENTIFIED BY 'password';
CREATE DATABASE IF NOT EXISTS `gitlabhq_production` DEFAULT CHARACTER SET `utf8` COLLATE `utf8_unicode_ci`;
GRANT ALL PRIVILEGES ON `gitlabhq_production`.* TO 'gitlab'@'%.%.%.%';

We are now ready to start the GitLab application.

Assuming that the mysql server host is 192.168.1.100

docker run --name gitlab -d \
    --env 'DB_ADAPTER=mysql2' --env 'DB_HOST=192.168.1.100' \
    --env 'DB_NAME=gitlabhq_production' \
    --env 'DB_USER=gitlab' --env 'DB_PASS=password' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Linking to MySQL Container

You can link this image with a mysql container for the database requirements. The alias of the mysql server container should be set to mysql while linking with the gitlab image.

If a mysql container is linked, only the DB_ADAPTER, DB_HOST and DB_PORT settings are automatically retrieved using the linkage. You may still need to set other database connection parameters such as the DB_NAME, DB_USER, DB_PASS and so on.

To illustrate linking with a mysql container, we will use the sameersbn/mysql image. When using docker-mysql in production you should mount a volume for the mysql data store. Please refer the README of docker-mysql for details.

First, lets pull the mysql image from the docker index.

docker pull sameersbn/mysql:latest

For data persistence lets create a store for the mysql and start the container.

SELinux users are also required to change the security context of the mount point so that it plays nicely with selinux.

mkdir -p /srv/docker/gitlab/mysql
sudo chcon -Rt svirt_sandbox_file_t /srv/docker/gitlab/mysql

The run command looks like this.

docker run --name gitlab-mysql -d \
    --env 'DB_NAME=gitlabhq_production' \
    --env 'DB_USER=gitlab' --env 'DB_PASS=password' \
    --volume /srv/docker/gitlab/mysql:/var/lib/mysql \
    sameersbn/mysql:latest

The above command will create a database named gitlabhq_production and also create a user named gitlab with the password password with full/remote access to the gitlabhq_production database.

We are now ready to start the GitLab application.

docker run --name gitlab -d --link gitlab-mysql:mysql \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Here the image will also automatically fetch the DB_NAME, DB_USER and DB_PASS variables from the mysql container as they are specified in the docker run command for the mysql container. This is made possible using the magic of docker links and works with the following images:

Redis

GitLab uses the redis server for its key-value data store. The redis server connection details can be specified using environment variables.

Internal Redis Server

The internal redis server has been removed from the image. Please use a linked redis container or specify a external redis connection.

External Redis Server

The image can be configured to use an external redis server. The configuration should be specified using environment variables while starting the GitLab image.

Assuming that the redis server host is 192.168.1.100

docker run --name gitlab -it --rm \
    --env 'REDIS_HOST=192.168.1.100' --env 'REDIS_PORT=6379' \
    sameersbn/gitlab:8.7.2

Linking to Redis Container

You can link this image with a redis container to satisfy gitlab's redis requirement. The alias of the redis server container should be set to redisio while linking with the gitlab image.

To illustrate linking with a redis container, we will use the sameersbn/redis image. Please refer the README of docker-redis for details.

First, lets pull the redis image from the docker index.

docker pull sameersbn/redis:latest

Lets start the redis container

docker run --name gitlab-redis -d \
    --volume /srv/docker/gitlab/redis:/var/lib/redis \
    sameersbn/redis:latest

We are now ready to start the GitLab application.

docker run --name gitlab -d --link gitlab-redis:redisio \
    sameersbn/gitlab:8.7.2

Mail

The mail configuration should be specified using environment variables while starting the GitLab image. The configuration defaults to using gmail to send emails and requires the specification of a valid username and password to login to the gmail servers.

If you are using Gmail then all you need to do is:

docker run --name gitlab -d \
    --env '[email protected]' --env 'SMTP_PASS=PASSWORD' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.0.0

Please refer the Available Configuration Parameters section for the list of SMTP parameters that can be specified.

Reply by email

Since version 8.0.0 GitLab adds support for commenting on issues by replying to emails.

To enable this feature you need to provide IMAP configuration parameters that will allow GitLab to connect to your mail server and read mails. Additionally, you may need to specify GITLAB_INCOMING_EMAIL_ADDRESS if your incoming email address is not the same as the IMAP_USER.

If your email provider supports email sub-addressing then you should add the +%{key} placeholder after the user part of the email address, eg. GITLAB_INCOMING_EMAIL_ADDRESS=reply+%{key}@example.com. Please read the documentation on reply by email to understand the requirements for this feature.

If you are using Gmail then all you need to do is:

docker run --name gitlab -d \
    --env '[email protected]' --env 'IMAP_PASS=PASSWORD' \
    --env 'GITLAB_INCOMING_EMAIL_ADDRESS=USER+%{key}@gmail.com' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Please refer the Available Configuration Parameters section for the list of IMAP parameters that can be specified.

SSL

Access to the gitlab application can be secured using SSL so as to prevent unauthorized access to the data in your repositories. While a CA certified SSL certificate allows for verification of trust via the CA, a self signed certificates can also provide an equal level of trust verification as long as each client takes some additional steps to verify the identity of your website. I will provide instructions on achieving this towards the end of this section.

Jump to the Using HTTPS with a load balancer section if you are using a load balancer such as hipache, haproxy or nginx.

To secure your application via SSL you basically need two things:

  • Private key (.key)
  • SSL certificate (.crt)

When using CA certified certificates, these files are provided to you by the CA. When using self-signed certificates you need to generate these files yourself. Skip to Strengthening the server security section if you are armed with CA certified SSL certificates.

Generation of Self Signed Certificates

Generation of self-signed SSL certificates involves a simple 3 step procedure.

STEP 1: Create the server private key

openssl genrsa -out gitlab.key 2048

STEP 2: Create the certificate signing request (CSR)

openssl req -new -key gitlab.key -out gitlab.csr

STEP 3: Sign the certificate using the private key and CSR

openssl x509 -req -days 3650 -in gitlab.csr -signkey gitlab.key -out gitlab.crt

Congratulations! you have now generated an SSL certificate that will be valid for 10 years.

Strengthening the server security

This section provides you with instructions to strengthen your server security. To achieve this we need to generate stronger DHE parameters.

openssl dhparam -out dhparam.pem 2048

Installation of the SSL Certificates

Out of the four files generated above, we need to install the gitlab.key, gitlab.crt and dhparam.pem files at the gitlab server. The CSR file is not needed, but do make sure you safely backup the file (in case you ever need it again).

The default path that the gitlab application is configured to look for the SSL certificates is at /home/git/data/certs, this can however be changed using the SSL_KEY_PATH, SSL_CERTIFICATE_PATH and SSL_DHPARAM_PATH configuration options.

If you remember from above, the /home/git/data path is the path of the data store, which means that we have to create a folder named certs/ inside /srv/docker/gitlab/gitlab/ and copy the files into it and as a measure of security we'll update the permission on the gitlab.key file to only be readable by the owner.

mkdir -p /srv/docker/gitlab/gitlab/certs
cp gitlab.key /srv/docker/gitlab/gitlab/certs/
cp gitlab.crt /srv/docker/gitlab/gitlab/certs/
cp dhparam.pem /srv/docker/gitlab/gitlab/certs/
chmod 400 /srv/docker/gitlab/gitlab/certs/gitlab.key

Great! we are now just one step away from having our application secured.

Enabling HTTPS support

HTTPS support can be enabled by setting the GITLAB_HTTPS option to true. Additionally, when using self-signed SSL certificates you need to the set SSL_SELF_SIGNED option to true as well. Assuming we are using self-signed certificates

docker run --name gitlab -d \
    --publish 10022:22 --publish 10080:80 --publish 10443:443 \
    --env 'GITLAB_SSH_PORT=10022' --env 'GITLAB_PORT=10443' \
    --env 'GITLAB_HTTPS=true' --env 'SSL_SELF_SIGNED=true' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

In this configuration, any requests made over the plain http protocol will automatically be redirected to use the https protocol. However, this is not optimal when using a load balancer.

Configuring HSTS

HSTS if supported by the browsers makes sure that your users will only reach your sever via HTTPS. When the user comes for the first time it sees a header from the server which states for how long from now this site should only be reachable via HTTPS - that's the HSTS max-age value.

With NGINX_HSTS_MAXAGE you can configure that value. The default value is 31536000 seconds. If you want to disable a already sent HSTS MAXAGE value, set it to 0.

docker run --name gitlab -d \
 --env 'GITLAB_HTTPS=true' --env 'SSL_SELF_SIGNED=true' \
 --env 'NGINX_HSTS_MAXAGE=2592000' \
 --volume /srv/docker/gitlab/gitlab:/home/git/data \
 sameersbn/gitlab:8.7.2

If you want to completely disable HSTS set NGINX_HSTS_ENABLED to false.

Using HTTPS with a load balancer

Load balancers like nginx/haproxy/hipache talk to backend applications over plain http and as such the installation of ssl keys and certificates are not required and should NOT be installed in the container. The SSL configuration has to instead be done at the load balancer.

However, when using a load balancer you MUST set GITLAB_HTTPS to true. Additionally you will need to set the SSL_SELF_SIGNED option to true if self signed SSL certificates are in use.

With this in place, you should configure the load balancer to support handling of https requests. But that is out of the scope of this document. Please refer to Using SSL/HTTPS with HAProxy for information on the subject.

When using a load balancer, you probably want to make sure the load balancer performs the automatic http to https redirection. Information on this can also be found in the link above.

In summation, when using a load balancer, the docker command would look for the most part something like this:

docker run --name gitlab -d \
    --publish 10022:22 --publish 10080:80 \
    --env 'GITLAB_SSH_PORT=10022' --env 'GITLAB_PORT=443' \
    --env 'GITLAB_HTTPS=true' --env 'SSL_SELF_SIGNED=true' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

Again, drop the --env 'SSL_SELF_SIGNED=true' option if you are using CA certified SSL certificates.

In case Gitlab responds to any kind of POST request (login, OAUTH, changing settings etc.) with a 422 HTTP Error, consider adding this to your reverse proxy configuration:

proxy_set_header X-Forwarded-Ssl on; (nginx format)

Establishing trust with your server

This section deals will self-signed ssl certificates. If you are using CA certified certificates, your done.

This section is more of a client side configuration so as to add a level of confidence at the client to be 100 percent sure they are communicating with whom they think they.

This is simply done by adding the servers certificate into their list of trusted certificates. On ubuntu, this is done by copying the gitlab.crt file to /usr/local/share/ca-certificates/ and executing update-ca-certificates.

Again, this is a client side configuration which means that everyone who is going to communicate with the server should perform this configuration on their machine. In short, distribute the gitlab.crt file among your developers and ask them to add it to their list of trusted ssl certificates. Failure to do so will result in errors that look like this:

git clone https://git.local.host/gitlab-ce.git
fatal: unable to access 'https://git.local.host/gitlab-ce.git': server certificate verification failed. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile: none

You can do the same at the web browser. Instructions for installing the root certificate for firefox can be found here. You will find similar options chrome, just make sure you install the certificate under the authorities tab of the certificate manager dialog.

There you have it, thats all there is to it.

Installing Trusted SSL Server Certificates

If your GitLab CI server is using self-signed SSL certificates then you should make sure the GitLab CI server certificate is trusted on the GitLab server for them to be able to talk to each other.

The default path image is configured to look for the trusted SSL certificates is at /home/git/data/certs/ca.crt, this can however be changed using the SSL_CA_CERTIFICATES_PATH configuration option.

Copy the ca.crt file into the certs directory on the datastore. The ca.crt file should contain the root certificates of all the servers you want to trust. With respect to GitLab CI, this will be the contents of the gitlab_ci.crt file as described in the README of the docker-gitlab-ci container.

By default, our own server certificate gitlab.crt is added to the trusted certificates list.

Deploy to a subdirectory (relative url root)

By default GitLab expects that your application is running at the root (eg. /). This section explains how to run your application inside a directory.

Let's assume we want to deploy our application to '/git'. GitLab needs to know this directory to generate the appropriate routes. This can be specified using the GITLAB_RELATIVE_URL_ROOT configuration option like so:

docker run --name gitlab -it --rm \
    --env 'GITLAB_RELATIVE_URL_ROOT=/git' \
    --volume /srv/docker/gitlab/gitlab:/home/git/data \
    sameersbn/gitlab:8.7.2

GitLab will now be accessible at the /git path, e.g. http://www.example.com/git.

Note: The GITLAB_RELATIVE_URL_ROOT parameter should always begin with a slash and SHOULD NOT have any trailing slashes.

OmniAuth Integration

GitLab leverages OmniAuth to allow users to sign in using Twitter, GitHub, and other popular services. Configuring OmniAuth does not prevent standard GitLab authentication or LDAP (if configured) from continuing to work. Users can choose to sign in using any of the configured mechanisms.

Refer to the GitLab documentation for additional information.

CAS3

To enable the CAS OmniAuth provider you must register your application with your CAS instance. This requires the service URL GitLab will supply to CAS. It should be something like: https://git.example.com:443/users/auth/cas3/callback?url. By default handling for SLO is enabled, you only need to configure CAS for backchannel logout.

For example, if your cas server url is https://sso.example.com, then adding --env 'OAUTH_CAS3_SERVER=https://sso.example.com' to the docker run command enables support for CAS3 OAuth. Please refer to Available Configuration Parameters for additional CAS3 configuration parameters.

Google

To enable the Google OAuth2 OmniAuth provider you must register your application with Google. Google will generate a client ID and secret key for you to use. Please refer to the GitLab documentation for the procedure to generate the client ID and secret key with google.

Once you have the client ID and secret keys generated, configure them using the OAUTH_GOOGLE_API_KEY and OAUTH_GOOGLE_APP_SECRET environment variables respectively.

For example, if your client ID is xxx.apps.googleusercontent.com and client secret key is yyy, then adding --env 'OAUTH_GOOGLE_API_KEY=xxx.apps.googleusercontent.com' --env 'OAUTH_GOOGLE_APP_SECRET=yyy' to the docker run command enables support for Google OAuth.

You can also restrict logins to a single domain by adding --env 'OAUTH_GOOGLE_RESTRICT_DOMAIN=example.com'.

Facebook

To enable the Facebook OAuth2 OmniAuth provider you must register your application with Facebook. Facebook will generate a API key and secret for you to use. Please refer to the GitLab documentation for the procedure to generate the API key and secret.

Once you have the API key and secret generated, configure them using the OAUTH_FACEBOOK_API_KEY and OAUTH_FACEBOOK_APP_SECRET environment variables respectively.

For example, if your API key is xxx and the API secret key is yyy, then adding --env 'OAUTH_FACEBOOK_API_KEY=xxx' --env 'OAUTH_FACEBOOK_APP_SECRET=yyy' to the docker run command enables support for Facebook OAuth.

Twitter

To enable the Twitter OAuth2 OmniAuth provider you must register your application with Twitter. Twitter will generate a API key and secret for you to use. Please refer to the GitLab documentation for the procedure to generate the API key and secret with twitter.

Once you have the API key and secret generated, configure them using the OAUTH_TWITTER_API_KEY and OAUTH_TWITTER_APP_SECRET environment variables respectively.

For example, if your API key is xxx and the API secret key is yyy, then adding --env 'OAUTH_TWITTER_API_KEY=xxx' --env 'OAUTH_TWITTER_APP_SECRET=yyy' to the docker run command enables support for Twitter OAuth.

GitHub

To enable the GitHub OAuth2 OmniAuth provider you must register your application with GitHub. GitHub will generate a Client ID and secret for you to use. Please refer to the GitLab documentation for the procedure to generate the Client ID and secret with github.

Once you have the Client ID and secret generated, configure them using the OAUTH_GITHUB_API_KEY and OAUTH_GITHUB_APP_SECRET environment variables respectively.

For example, if your Client ID is xxx and the Client secret is yyy, then adding --env 'OAUTH_GITHUB_API_KEY=xxx' --env 'OAUTH_GITHUB_APP_SECRET=yyy' to the docker run command enables support for GitHub OAuth.

GitLab

To enable the GitLab OAuth2 OmniAuth provider you must register your application with GitLab. GitLab will generate a Client ID and secret for you to use. Please refer to the GitLab documentation for the procedure to generate the Client ID and secret with GitLab.

Once you have the Client ID and secret generated, configure them using the OAUTH_GITLAB_API_KEY and OAUTH_GITLAB_APP_SECRET environment variables respectively.

For example, if your Client ID is xxx and the Client secret is yyy, then adding --env 'OAUTH_GITLAB_API_KEY=xxx' --env 'OAUTH_GITLAB_APP_SECRET=yyy' to the docker run command enables support for GitLab OAuth.

BitBucket

To enable the BitBucket OAuth2 OmniAuth provider you must register your application with BitBucket. BitBucket will generate a Client ID and secret for you to use. Please refer to the GitLab documentation for the procedure to generate the Client ID and secret with BitBucket.

Once you have the Client ID and secret generated, configure them using the OAUTH_BITBUCKET_API_KEY and OAUTH_BITBUCKET_APP_SECRET environment variables respectively.

For example, if your Client ID is xxx and the Client secret is yyy, then adding --env 'OAUTH_BITBUCKET_API_KEY=xxx' --env 'OAUTH_BITBUCKET_APP_SECRET=yyy' to the docker run command enables support for BitBucket OAuth.

SAML

GitLab can be configured to act as a SAML 2.0 Service Provider (SP). This allows GitLab to consume assertions from a SAML 2.0 Identity Provider (IdP) such as Microsoft ADFS to authenticate users. Please refer to the GitLab documentation.

The following parameters have to be configured to enable SAML OAuth support in this image: OAUTH_SAML_ASSERTION_CONSUMER_SERVICE_URL, OAUTH_SAML_IDP_CERT_FINGERPRINT, OAUTH_SAML_IDP_SSO_TARGET_URL, OAUTH_SAML_ISSUER and OAUTH_SAML_NAME_IDENTIFIER_FORMAT.

You can also override the default "Sign in with" button label with OAUTH_SAML_LABEL.

Please refer to Available Configuration Parameters for the default configurations of these parameters.

Crowd

To enable the Crowd server OAuth2 OmniAuth provider you must register your application with Crowd server.

Configure GitLab to enable access the Crowd server by specifying the OAUTH_CROWD_SERVER_URL, OAUTH_CROWD_APP_NAME and OAUTH_CROWD_APP_PASSWORD environment variables.

Auth0

To enable the Auth0 OmniAuth provider you must register your application with auth0.

Configure the following environment variables OAUTH_AUTH0_CLIENT_ID, OAUTH_AUTH0_CLIENT_SECRET and OAUTH_AUTH0_DOMAIN to complete the integration.

Microsoft Azure

To enable the Microsoft Azure OAuth2 OmniAuth provider you must register your application with Azure. Azure will generate a Client ID, Client secret and Tenant ID for you to use. Please refer to the GitLab documentation for the procedure.

Once you have the Client ID, Client secret and Tenant ID generated, configure them using the OAUTH_AZURE_API_KEY, OAUTH_AZURE_API_SECRET and OAUTH_AZURE_TENANT_ID environment variables respectively.

For example, if your Client ID is xxx, the Client secret is yyy and the Tenant ID is zzz, then adding --env 'OAUTH_AZURE_API_KEY=xxx' --env 'OAUTH_AZURE_API_SECRET=yyy' --env 'OAUTH_AZURE_TENANT_ID=zzz' to the docker run command enables support for Microsoft Azure OAuth.

External Issue Trackers

Since version 7.10.0 support for external issue trackers can be enabled in the "Service Templates" section of the settings panel.

If you are using the docker-redmine image, you can one up the gitlab integration with redmine by adding --volumes-from=gitlab flag to the docker run command while starting the redmine container.

By using the above option the /home/git/data/repositories directory will be accessible by the redmine container and now you can add your git repository path to your redmine project. If, for example, in your gitlab server you have a project named opensource/gitlab, the bare repository will be accessible at /home/git/data/repositories/opensource/gitlab.git in the redmine container.

Host UID / GID Mapping

Per default the container is configured to run gitlab as user and group git with uid and gid 1000. The host possibly uses this ids for different purposes leading to unfavorable effects. From the host it appears as if the mounted data volumes are owned by the host's user/group 1000.

Also the container processes seem to be executed as the host's user/group 1000. The container can be configured to map the uid and gid of git to different ids on host by passing the environment variables USERMAP_UID and USERMAP_GID. The following command maps the ids to user and group git on the host.

docker run --name gitlab -it --rm [options] \
    --env "USERMAP_UID=$(id -u git)" --env "USERMAP_GID=$(id -g git)" \
    sameersbn/gitlab:8.7.2

When changing this mapping, all files and directories in the mounted data volume /home/git/data have to be re-owned by the new ids. This can be achieved automatically using the following command:

docker run --name gitlab -d [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:sanitize

Piwik

If you want to monitor your gitlab instance with Piwik, there are two options to setup: PIWIK_URL and PIWIK_SITE_ID. These options should contain something like:

  • PIWIK_URL=piwik.example.org
  • PIWIK_SITE_ID=42

Available Configuration Parameters

Please refer the docker run command options for the --env-file flag where you can specify all required environment variables in a single file. This will save you from writing a potentially long docker run command. Alternatively you can use docker-compose.

Below is the complete list of available options that can be used to customize your gitlab installation.

  • DEBUG: Set this to true to enable entrypoint debugging.
  • GITLAB_HOST: The hostname of the GitLab server. Defaults to localhost
  • GITLAB_CI_HOST: If you are migrating from GitLab CI use this parameter to configure the redirection to the GitLab service so that your existing runners continue to work without any changes. No defaults.
  • GITLAB_PORT: The port of the GitLab server. This value indicates the public port on which the GitLab application will be accessible on the network and appropriately configures GitLab to generate the correct urls. It does not affect the port on which the internal nginx server will be listening on. Defaults to 443 if GITLAB_HTTPS=true, else defaults to 80.
  • GITLAB_SECRETS_DB_KEY_BASE: Used to encrypt build variables. Ensure that you don't lose it. You can generate one using pwgen -Bsv1 64. If you are migrating from GitLab CI, you need to set this value to the value of GITLAB_CI_SECRETS_DB_KEY_BASE. No defaults.
  • GITLAB_TIMEZONE: Configure the timezone for the gitlab application. This configuration does not effect cron jobs. Defaults to UTC. See the list of acceptable values.
  • GITLAB_ROOT_PASSWORD: The password for the root user on firstrun. Defaults to 5iveL!fe.
  • GITLAB_ROOT_EMAIL: The email for the root user on firstrun. Defaults to [email protected]
  • GITLAB_EMAIL: The email address for the GitLab server. Defaults to value of SMTP_USER, else defaults to [email protected].
  • GITLAB_EMAIL_DISPLAY_NAME: The name displayed in emails sent out by the GitLab mailer. Defaults to GitLab.
  • GITLAB_EMAIL_REPLY_TO: The reply-to address of emails sent out by GitLab. Defaults to value of GITLAB_EMAIL, else defaults to [email protected].
  • GITLAB_EMAIL_ENABLED: Enable or disable gitlab mailer. Defaults to the SMTP_ENABLED configuration.
  • GITLAB_INCOMING_EMAIL_ADDRESS: The incoming email address for reply by email. Defaults to the value of IMAP_USER, else defaults to [email protected]. Please read the reply by email documentation to curretly set this parameter.
  • GITLAB_INCOMING_EMAIL_ENABLED: Enable or disable gitlab reply by email feature. Defaults to the value of IMAP_ENABLED.
  • GITLAB_SIGNUP_ENABLED: Enable or disable user signups (first run only). Default is true.
  • GITLAB_USERNAME_CHANGE: Enable or disable ability for users to change their username. Defaults is true.
  • GITLAB_CREATE_GROUP: Enable or disable ability for users to create groups. Defaults is true.
  • GITLAB_PROJECTS_ISSUES: Set if issues feature should be enabled by default for new projects. Defaults is true.
  • GITLAB_PROJECTS_MERGE_REQUESTS: Set if merge requests feature should be enabled by default for new projects. Defaults is true.
  • GITLAB_PROJECTS_WIKI: Set if wiki feature should be enabled by default for new projects. Defaults is true.
  • GITLAB_PROJECTS_SNIPPETS: Set if snippets feature should be enabled by default for new projects. Defaults is false.
  • GITLAB_PROJECTS_BUILDS: Set if builds feature should be enabled by default for new projects. Defaults is true.
  • GITLAB_WEBHOOK_TIMEOUT: Sets the timeout for webhooks. Defaults to 10 seconds.
  • GITLAB_TIMEOUT: Sets the timeout for git commands. Defaults to 10 seconds.
  • GITLAB_MAX_OBJECT_SIZE: Maximum size (in bytes) of a git object (eg. a commit) in bytes. Defaults to 20971520, i.e. 20 megabytes.
  • GITLAB_NOTIFY_ON_BROKEN_BUILDS: Enable or disable broken build notification emails. Defaults to true
  • GITLAB_NOTIFY_PUSHER: Add pusher to recipients list of broken build notification emails. Defaults to false
  • GITLAB_REPOS_DIR: The git repositories folder in the container. Defaults to /home/git/data/repositories
  • GITLAB_BACKUP_DIR: The backup folder in the container. Defaults to /home/git/data/backups
  • GITLAB_BUILDS_DIR: The build traces directory. Defaults to /home/git/data/builds
  • GITLAB_DOWNLOADS_DIR: The repository downloads directory. A temporary zip is created in this directory when users click Download Zip on a project. Defaults to /home/git/data/tmp/downloads.
  • GITLAB_SHARED_DIR: The directory to store the build artifacts. Defaults to /home/git/data/shared
  • GITLAB_ARTIFACTS_ENABLED: Enable/Disable GitLab artifacts support. Defaults to true.
  • GITLAB_ARTIFACTS_DIR: Directory to store the artifacts. Defaults to $GITLAB_SHARED_DIR/artifacts
  • GITLAB_LFS_ENABLED: Enable/Disable Git LFS support. Defaults to true.
  • GITLAB_LFS_OBJECTS_DIR: Directory to store the lfs-objects. Defaults to $GITLAB_SHARED_DIR/lfs-objects
  • GITLAB_BACKUP_SCHEDULE: Setup cron job to automatic backups. Possible values disable, daily, weekly or monthly. Disabled by default
  • GITLAB_BACKUP_EXPIRY: Configure how long (in seconds) to keep backups before they are deleted. By default when automated backups are disabled backups are kept forever (0 seconds), else the backups expire in 7 days (604800 seconds).
  • GITLAB_BACKUP_PG_SCHEMA: Specify the PostgreSQL schema for the backups. No defaults, which means that all schemas will be backed up. see #524
  • GITLAB_BACKUP_ARCHIVE_PERMISSIONS: Sets the permissions of the backup archives. Defaults to 0600. See
  • GITLAB_BACKUP_TIME: Set a time for the automatic backups in HH:MM format. Defaults to 04:00.
  • GITLAB_BACKUP_SKIP: Specified sections are skipped by the backups. Defaults to empty, i.e. lfs,uploads. See
  • GITLAB_SSH_HOST: The ssh host. Defaults to GITLAB_HOST.
  • GITLAB_SSH_PORT: The ssh port number. Defaults to 22.
  • GITLAB_RELATIVE_URL_ROOT: The relative url of the GitLab server, e.g. /git. No default.
  • GITLAB_TRUSTED_PROXIES: Add IP address reverse proxy to trusted proxy list, otherwise users will appear signed in from that address. Currently only a single entry is permitted. No defaults.
  • GITLAB_HTTPS: Set to true to enable https support, disabled by default.
  • SSL_SELF_SIGNED: Set to true when using self signed ssl certificates. false by default.
  • SSL_CERTIFICATE_PATH: Location of the ssl certificate. Defaults to /home/git/data/certs/gitlab.crt
  • SSL_KEY_PATH: Location of the ssl private key. Defaults to /home/git/data/certs/gitlab.key
  • SSL_DHPARAM_PATH: Location of the dhparam file. Defaults to /home/git/data/certs/dhparam.pem
  • SSL_VERIFY_CLIENT: Enable verification of client certificates using the SSL_CA_CERTIFICATES_PATH file. Defaults to false
  • SSL_CA_CERTIFICATES_PATH: List of SSL certificates to trust. Defaults to /home/git/data/certs/ca.crt.
  • NGINX_WORKERS: The number of nginx workers to start. Defaults to 1.
  • NGINX_HSTS_ENABLED: Advanced configuration option for turning off the HSTS configuration. Applicable only when SSL is in use. Defaults to true. See #138 for use case scenario.
  • NGINX_HSTS_MAXAGE: Advanced configuration option for setting the HSTS max-age in the gitlab nginx vHost configuration. Applicable only when SSL is in use. Defaults to 31536000.
  • NGINX_PROXY_BUFFERING: Enable proxy_buffering. Defaults to off.
  • NGINX_ACCEL_BUFFERING: Enable X-Accel-Buffering header. Default to no
  • NGINX_X_FORWARDED_PROTO: Advanced configuration option for the proxy_set_header X-Forwarded-Proto setting in the gitlab nginx vHost configuration. Defaults to https when GITLAB_HTTPS is true, else defaults to $scheme.
  • REDIS_HOST: The hostname of the redis server. Defaults to localhost
  • REDIS_PORT: The connection port of the redis server. Defaults to 6379.
  • REDIS_DB_NUMBER: The redis database number. Defaults to '0'.
  • UNICORN_WORKERS: The number of unicorn workers to start. Defaults to 3.
  • UNICORN_TIMEOUT: Sets the timeout of unicorn worker processes. Defaults to 60 seconds.
  • SIDEKIQ_CONCURRENCY: The number of concurrent sidekiq jobs to run. Defaults to 25
  • SIDEKIQ_SHUTDOWN_TIMEOUT: Timeout for sidekiq shutdown. Defaults to 4
  • SIDEKIQ_MEMORY_KILLER_MAX_RSS: Non-zero value enables the SidekiqMemoryKiller. Defaults to 1000000. For additional options refer Configuring the MemoryKiller
  • DB_ADAPTER: The database type. Possible values: mysql2, postgresql. Defaults to postgresql.
  • DB_ENCODING: The database encoding. For DB_ADAPTER values postresql and mysql2, this parameter defaults to unicode and utf8 respectively.
  • DB_HOST: The database server hostname. Defaults to localhost.
  • DB_PORT: The database server port. Defaults to 3306 for mysql and 5432 for postgresql.
  • DB_NAME: The database database name. Defaults to gitlabhq_production
  • DB_USER: The database database user. Defaults to root
  • DB_PASS: The database database password. Defaults to no password
  • DB_POOL: The database database connection pool count. Defaults to 10.
  • SMTP_ENABLED: Enable mail delivery via SMTP. Defaults to true if SMTP_USER is defined, else defaults to false.
  • SMTP_DOMAIN: SMTP domain. Defaults to www.gmail.com
  • SMTP_HOST: SMTP server host. Defaults to smtp.gmail.com.
  • SMTP_PORT: SMTP server port. Defaults to 587.
  • SMTP_USER: SMTP username.
  • SMTP_PASS: SMTP password.
  • SMTP_STARTTLS: Enable STARTTLS. Defaults to true.
  • SMTP_TLS: Enable SSL/TLS. Defaults to false.
  • SMTP_OPENSSL_VERIFY_MODE: SMTP openssl verification mode. Accepted values are none, peer, client_once and fail_if_no_peer_cert. Defaults to none.
  • SMTP_AUTHENTICATION: Specify the SMTP authentication method. Defaults to login if SMTP_USER is set.
  • SMTP_CA_ENABLED: Enable custom CA certificates for SMTP email configuration. Defaults to false.
  • SMTP_CA_PATH: Specify the ca_path parameter for SMTP email configuration. Defaults to /home/git/data/certs.
  • SMTP_CA_FILE: Specify the ca_file parameter for SMTP email configuration. Defaults to /home/git/data/certs/ca.crt.
  • IMAP_ENABLED: Enable mail delivery via IMAP. Defaults to true if IMAP_USER is defined, else defaults to false.
  • IMAP_HOST: IMAP server host. Defaults to imap.gmail.com.
  • IMAP_PORT: IMAP server port. Defaults to 993.
  • IMAP_USER: IMAP username.
  • IMAP_PASS: IMAP password.
  • IMAP_SSL: Enable SSL. Defaults to true.
  • IMAP_STARTTLS: Enable STARTSSL. Defaults to false.
  • IMAP_MAILBOX: The name of the mailbox where incoming mail will end up. Defaults to inbox.
  • LDAP_ENABLED: Enable LDAP. Defaults to false
  • LDAP_LABEL: Label to show on login tab for LDAP server. Defaults to 'LDAP'
  • LDAP_HOST: LDAP Host
  • LDAP_PORT: LDAP Port. Defaults to 389
  • LDAP_UID: LDAP UID. Defaults to sAMAccountName
  • LDAP_METHOD: LDAP method, Possible values are ssl, tls and plain. Defaults to plain
  • LDAP_BIND_DN: No default.
  • LDAP_PASS: LDAP password
  • LDAP_TIMEOUT: Timeout, in seconds, for LDAP queries. Defaults to 10.
  • LDAP_ACTIVE_DIRECTORY: Specifies if LDAP server is Active Directory LDAP server. If your LDAP server is not AD, set this to false. Defaults to true,
  • LDAP_ALLOW_USERNAME_OR_EMAIL_LOGIN: If enabled, GitLab will ignore everything after the first '@' in the LDAP username submitted by the user on login. Defaults to false if LDAP_UID is userPrincipalName, else true.
  • LDAP_BLOCK_AUTO_CREATED_USERS: Locks down those users until they have been cleared by the admin. Defaults to false.
  • LDAP_BASE: Base where we can search for users. No default.
  • LDAP_USER_FILTER: Filter LDAP users. No default.
  • OAUTH_ENABLED: Enable OAuth support. Defaults to true if any of the support OAuth providers is configured, else defaults to false.
  • OAUTH_AUTO_SIGN_IN_WITH_PROVIDER: Automatically sign in with a specific OAuth provider without showing GitLab sign-in page. Accepted values are cas3, github, bitbucket, gitlab, google_oauth2, facebook, twitter, saml, crowd, auth0 and azure_oauth2. No default.
  • OAUTH_ALLOW_SSO: Comma separated list of oauth providers for single sign-on. This allows users to login without having a user account. The account is created automatically when authentication is successful. Accepted values are cas3, github, bitbucket, gitlab, google_oauth2, facebook, twitter, saml, crowd, auth0 and azure_oauth2. No default.
  • OAUTH_BLOCK_AUTO_CREATED_USERS: Locks down those users until they have been cleared by the admin. Defaults to true.
  • OAUTH_AUTO_LINK_LDAP_USER: Look up new users in LDAP servers. If a match is found (same uid), automatically link the omniauth identity with the LDAP account. Defaults to false.
  • OAUTH_AUTO_LINK_SAML_USER: Allow users with existing accounts to login and auto link their account via SAML login, without having to do a manual login first and manually add SAML. Defaults to false.
  • OAUTH_EXTERNAL_PROVIDERS: Comma separated list if oauth providers to disallow access to internal projects. Users creating accounts via these providers will have access internal projects. Accepted values are cas3, github, bitbucket, gitlab, google_oauth2, facebook, twitter, saml, crowd, auth0 and azure_oauth2. No default.
  • OAUTH_CAS3_LABEL: The "Sign in with" button label. Defaults to "cas3".
  • OAUTH_CAS3_SERVER: CAS3 server URL. No defaults.
  • OAUTH_CAS3_DISABLE_SSL_VERIFICATION: Disable CAS3 SSL verification. Defaults to false.
  • OAUTH_CAS3_LOGIN_URL: CAS3 login URL. Defaults to /cas/login
  • OAUTH_CAS3_VALIDATE_URL: CAS3 validation URL. Defaults to /cas/p3/serviceValidate
  • OAUTH_CAS3_LOGOUT_URL: CAS3 logout URL. Defaults to /cas/logout
  • OAUTH_GOOGLE_API_KEY: Google App Client ID. No defaults.
  • OAUTH_GOOGLE_APP_SECRET: Google App Client Secret. No defaults.
  • OAUTH_GOOGLE_RESTRICT_DOMAIN: Google App restricted domain. No defaults.
  • OAUTH_FACEBOOK_API_KEY: Facebook App API key. No defaults.
  • OAUTH_FACEBOOK_APP_SECRET: Facebook App API secret. No defaults.
  • OAUTH_TWITTER_API_KEY: Twitter App API key. No defaults.
  • OAUTH_TWITTER_APP_SECRET: Twitter App API secret. No defaults.
  • OAUTH_GITHUB_API_KEY: GitHub App Client ID. No defaults.
  • OAUTH_GITHUB_APP_SECRET: GitHub App Client secret. No defaults.
  • OAUTH_GITLAB_API_KEY: GitLab App Client ID. No defaults.
  • OAUTH_GITLAB_APP_SECRET: GitLab App Client secret. No defaults.
  • OAUTH_BITBUCKET_API_KEY: BitBucket App Client ID. No defaults.
  • OAUTH_BITBUCKET_APP_SECRET: BitBucket App Client secret. No defaults.
  • OAUTH_SAML_ASSERTION_CONSUMER_SERVICE_URL: The URL at which the SAML assertion should be received. When GITLAB_HTTPS=true, defaults to https://${GITLAB_HOST}/users/auth/saml/callback else defaults to http://${GITLAB_HOST}/users/auth/saml/callback.
  • OAUTH_SAML_IDP_CERT_FINGERPRINT: The SHA1 fingerprint of the certificate. No Defaults.
  • OAUTH_SAML_IDP_SSO_TARGET_URL: The URL to which the authentication request should be sent. No defaults.
  • OAUTH_SAML_ISSUER: The name of your application. When GITLAB_HTTPS=true, defaults to https://${GITLAB_HOST} else defaults to http://${GITLAB_HOST}.
  • OAUTH_SAML_LABEL: The "Sign in with" button label. Defaults to "Our SAML Provider".
  • OAUTH_SAML_NAME_IDENTIFIER_FORMAT: Describes the format of the username required by GitLab, Defaults to urn:oasis:names:tc:SAML:2.0:nameid-format:transient
  • OAUTH_CROWD_SERVER_URL: Crowd server url. No defaults.
  • OAUTH_CROWD_APP_NAME: Crowd server application name. No defaults.
  • OAUTH_CROWD_APP_PASSWORD: Crowd server application password. No defaults.
  • OAUTH_AUTH0_CLIENT_ID: Auth0 Client ID. No defaults.
  • OAUTH_AUTH0_CLIENT_SECRET: Auth0 Client secret. No defaults.
  • OAUTH_AUTH0_DOMAIN: Auth0 Domain. No defaults.
  • OAUTH_AZURE_API_KEY: Azure Client ID. No defaults.
  • OAUTH_AZURE_API_SECRET: Azure Client secret. No defaults.
  • OAUTH_AZURE_TENANT_ID: Azure Tenant ID. No defaults.
  • GITLAB_GRAVATAR_ENABLED: Enables gravatar integration. Defaults to true.
  • GITLAB_GRAVATAR_HTTP_URL: Sets a custom gravatar url. Defaults to http://www.gravatar.com/avatar/%{hash}?s=%{size}&d=identicon. This can be used for Libravatar integration.
  • GITLAB_GRAVATAR_HTTPS_URL: Same as above, but for https. Defaults to https://secure.gravatar.com/avatar/%{hash}?s=%{size}&d=identicon.
  • USERMAP_UID: Sets the uid for user git to the specified uid. Defaults to 1000.
  • USERMAP_GID: Sets the gid for group git to the specified gid. Defaults to USERMAP_UID if defined, else defaults to 1000.
  • GOOGLE_ANALYTICS_ID: Google Analytics ID. No defaults.
  • PIWIK_URL: Sets the Piwik URL. No defaults.
  • PIWIK_SITE_ID: Sets the Piwik site ID. No defaults.
  • AWS_BACKUPS: Enables automatic uploads to an Amazon S3 instance. Defaults to false.
  • AWS_BACKUP_REGION: AWS region. No defaults.
  • AWS_BACKUP_ACCESS_KEY_ID: AWS access key id. No defaults.
  • AWS_BACKUP_SECRET_ACCESS_KEY: AWS secret access key. No defaults.
  • AWS_BACKUP_BUCKET: AWS bucket for backup uploads. No defaults.
  • GITLAB_ROBOTS_PATH: Location of custom robots.txt. Uses GitLab's default robots.txt configuration by default. See www.robotstxt.org for examples.
  • RACK_ATTACK_ENABLED: Enable/disable rack middleware for blocking & throttling abusive requests Defaults to true.
  • RACK_ATTACK_WHITELIST: Always allow requests from whitelisted host. Defaults to 127.0.0.1
  • RACK_ATTACK_MAXRETRY: Number of failed auth attempts before which an IP should be banned. Defaults to 10
  • RACK_ATTACK_FINDTIME: Number of seconds before resetting the per IP auth attempt counter. Defaults to 60.
  • RACK_ATTACK_BANTIME: Number of seconds an IP should be banned after too many auth attempts. Defaults to 3600.
  • GITLAB_WORKHORSE_TIMEOUT: Timeout for gitlab workhorse http proxy. Defaults to 5m0s.

Maintenance

Creating backups

Gitlab defines a rake task to take a backup of your gitlab installation. The backup consists of all git repositories, uploaded files and as you might expect, the sql database.

Before taking a backup make sure the container is stopped and removed to avoid container name conflicts.

docker stop gitlab && docker rm gitlab

Execute the rake task to create a backup.

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:backup:create

A backup will be created in the backups folder of the Data Store. You can change the location of the backups using the GITLAB_BACKUP_DIR configuration parameter.

P.S. Backups can also be generated on a running instance using docker exec as described in the Rake Tasks section. However, to avoid undesired side-effects, I advice against running backup and restore operations on a running instance.

Restoring Backups

Gitlab also defines a rake task to restore a backup.

Before performing a restore make sure the container is stopped and removed to avoid container name conflicts.

docker stop gitlab && docker rm gitlab

Execute the rake task to restore a backup. Make sure you run the container in interactive mode -it.

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:backup:restore

The list of all available backups will be displayed in reverse chronological order. Select the backup you want to restore and continue.

To avoid user interaction in the restore operation, specify the timestamp of the backup using the BACKUP argument to the rake task.

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:backup:restore BACKUP=1417624827

Automated Backups

The image can be configured to automatically take backups daily, weekly or monthly using the GITLAB_BACKUP_SCHEDULE configuration option.

Daily backups are created at GITLAB_BACKUP_TIME which defaults to 04:00 everyday. Weekly backups are created every Sunday at the same time as the daily backups. Monthly backups are created on the 1st of every month at the same time as the daily backups.

By default, when automated backups are enabled, backups are held for a period of 7 days. While when automated backups are disabled, the backups are held for an infinite period of time. This can behavior can be configured via the GITLAB_BACKUP_EXPIRY option.

Amazon Web Services (AWS) Remote Backups

The image can be configured to automatically upload the backups to an AWS S3 bucket. To enable automatic AWS backups first add --env 'AWS_BACKUPS=true' to the docker run command. In addition AWS_BACKUP_REGION and AWS_BACKUP_BUCKET must be properly configured to point to the desired AWS location. Finally an IAM user must be configured with appropriate access permission and their AWS keys exposed through AWS_BACKUP_ACCESS_KEY_ID and AWS_BACKUP_SECRET_ACCESS_KEY.

More details about the appropriate IAM user properties can found on doc.gitlab.com

AWS uploads are performed alongside normal backups, both through the appropriate app:rake command and when an automatic backup is performed.

Rake Tasks

The app:rake command allows you to run gitlab rake tasks. To run a rake task simply specify the task to be executed to the app:rake command. For example, if you want to gather information about GitLab and the system it runs on.

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:env:info

You can also use docker exec to run raketasks on running gitlab instance. For example,

docker exec -it gitlab sudo -HEu git bundle exec rake gitlab:env:info RAILS_ENV=production

Similarly, to import bare repositories into GitLab project instance

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:import:repos

Or

docker exec -it gitlab sudo -HEu git bundle exec rake gitlab:import:repos RAILS_ENV=production

For a complete list of available rake tasks please refer https://github.com/gitlabhq/gitlabhq/tree/master/doc/raketasks or the help section of your gitlab installation.

P.S. Please avoid running the rake tasks for backup and restore operations on a running gitlab instance.

Import Repositories

Copy all the bare git repositories to the repositories/ directory of the data store and execute the gitlab:import:repos rake task like so:

docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:8.7.2 app:rake gitlab:import:repos

Watch the logs and your repositories should be available into your new gitlab container.

See Rake Tasks for more information on executing rake tasks.

Upgrading

Important Notice

Since GitLab release 8.6.0 PostgreSQL users should enable pg_trgm extension on the GitLab database. Refer to GitLab's Postgresql Requirements for more information

If your using sameersbn/postgresql then please upgrade to sameersbn/postgresql:9.4-18 or later and add DB_EXTENSION=pg_trgm to the environment of the PostgreSQL container (see: https://github.com/sameersbn/docker-gitlab/blob/master/docker-compose.yml#L8).

GitLabHQ releases new versions on the 22nd of every month, bugfix releases immediately follow. I update this project almost immediately when a release is made (at least it has been the case so far). If you are using the image in production environments I recommend that you delay updates by a couple of days after the gitlab release, allowing some time for the dust to settle down.

To upgrade to newer gitlab releases, simply follow this 4 step upgrade procedure.

Note

Upgrading to sameersbn/gitlab:8.7.2 from sameersbn/gitlab:7.x.x can cause issues. It is therefore required that you first upgrade to sameersbn/gitlab:8.0.5-1 before upgrading to sameersbn/gitlab:8.1.0 or higher.

  • Step 1: Update the docker image.
docker pull sameersbn/gitlab:8.7.2
  • Step 2: Stop and remove the currently running image
docker stop gitlab
docker rm gitlab
  • Step 3: Create a backup
docker run --name gitlab -it --rm [OPTIONS] \
    sameersbn/gitlab:x.x.x app:rake gitlab:backup:create

Replace x.x.x with the version you are upgrading from. For example, if you are upgrading from version 6.0.0, set x.x.x to 6.0.0

  • Step 4: Start the image

Note: Since GitLab 8.0.0 you need to provide the GITLAB_SECRETS_DB_KEY_BASE parameter while starting the image.

docker run --name gitlab -d [OPTIONS] sameersbn/gitlab:8.7.2

Shell Access

For debugging and maintenance purposes you may want access the containers shell. If you are using docker version 1.3.0 or higher you can access a running containers shell using docker exec command.

docker exec -it gitlab bash

References

Packages

No packages published

Languages

  • Shell 87.1%
  • Ruby 10.7%
  • Makefile 2.2%