Reinforcement Learning Project v2 2016/04/27 v1 2016/04/25
Updated Smartcab.pdf - elaborated on the final discussion about optimal policy in respect to the agent.
FYI - Slightly modified environment.py and planner.py to notify the agent the game has finished by propagating the message to agent.LearningAgent.on_finished.
Report: Smartcab.pdf Report Source: https://docs.google.com/document/d/1Xfzw4powfsGocTZ8ANuXM4ahrjCKpCuyfB9jLfRFW8g/edit?usp=sharing Notepad for plots: smartcab_viz.ipynb
This project requires Python 2.7 with the pygame library installed:
https://www.pygame.org/wiki/GettingStarted
Open smartcab/agent.py
and implement LearningAgent
. Follow TODO
s for further instructions.
Make sure you are in the top-level project directory smartcab/
(that contains this README). Then run:
python smartcab/agent.py
OR:
python -m smartcab.agent
https://en.wikipedia.org/wiki/Q-learning http://artint.info/html/ArtInt_265.html