Skip to content

joeweiss/birdnetlib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

8746db6 · Dec 5, 2024
Dec 5, 2024
Mar 13, 2024
Apr 22, 2024
Jul 4, 2024
Dec 5, 2024
Dec 5, 2024
Jan 22, 2024
Apr 23, 2024
Aug 2, 2022
Aug 24, 2022
Aug 21, 2023
Oct 2, 2023
Aug 2, 2022
Aug 28, 2023
Dec 5, 2024
Nov 25, 2023

Repository files navigation

birdnetlib

PyPI Python 3.x Test

A python api for BirdNET-Analyzer and BirdNET-Lite

birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Documentation

Documentation is at https://joeweiss.github.io/birdnetlib.

See Getting Started for a quick introduction.

Installation

birdnetlib requires Python 3.9+ and prior installation of Tensorflow Lite, librosa and ffmpeg. See BirdNET-Analyzer for more details on installing the Tensorflow-related dependencies.

pip install birdnetlib

Basic usage

To use the latest BirdNET-Analyzer model, use the Analyzer class.

from birdnetlib import Recording
from birdnetlib.analyzer import Analyzer
from datetime import datetime

# Load and initialize the BirdNET-Analyzer models.
analyzer = Analyzer()

recording = Recording(
    analyzer,
    "sample.mp3",
    lat=35.4244,
    lon=-120.7463,
    date=datetime(year=2022, month=5, day=10), # use date or week_48
    min_conf=0.25,
)
recording.analyze()
print(recording.detections)

recording.detections contains a list of detected species, along with time ranges and confidence value.

[{'common_name': 'House Finch',
  'confidence': 0.5744,
  'end_time': 12.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 9.0,
  'label': 'Haemorhous mexicanus_House Finch'},
 {'common_name': 'House Finch',
  'confidence': 0.4496,
  'end_time': 15.0,
  'scientific_name': 'Haemorhous mexicanus',
  'start_time': 12.0,
  'label': 'Haemorhous mexicanus_House Finch'}]

The Recording class takes a file path as an argument. You can also use RecordingFileObject to analyze an in-memory object, or RecordingBuffer for handling an array buffer.

About BirdNET-Lite and BirdNET-Analyzer

birdnetlib uses models provided by BirdNET-Lite and BirdNET-Analyzer under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

BirdNET-Lite and BirdNET-Analyzer were developed by the K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology.

For more information on BirdNET analyzers, please see the project repositories below:

BirdNET-Analyzer

BirdNET-Lite

birdnetlib is not associated with BirdNET-Lite, BirdNET-Analyzer or the K. Lisa Yang Center for Conservation Bioacoustics.

About birdnetlib

birdnetlib is maintained by Joe Weiss. Contributions are welcome.

Project Goals

  • Establish a unified API for interacting with Tensorflow-based BirdNET analyzers
  • Enable python-based test cases for BirdNET analyzers
  • Make it easier to use BirdNET in python-based projects
  • Make it easier to migrate to new BirdNET versions/models as they become available