-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Integrate flash attention (#853)
* feat: add flash attention * fix: flash-attn dependency * fix: flash_attn dependency * fix: use cuda in flash_attn * fix: import flash_attn * fix: errors with batch_size > 1 * fix: remove use_flash * fix: optimize shape operation * fix: add causal mask * fix: flash attention import * fix: setup.py * fix: flash attention import * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: test ci * fix: passby flash attention * fix: test ci * Revert "fix: test ci" This reverts commit 979a42c.
- Loading branch information
1 parent
d2ecec6
commit e4717a3
Showing
3 changed files
with
156 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import torch | ||
import torch.nn as nn | ||
from torch import Tensor | ||
from typing import Optional, Tuple | ||
|
||
from torch.nn.functional import linear | ||
from flash_attn.flash_attn_interface import flash_attn_unpadded_func | ||
|
||
|
||
class MultiheadAttention(nn.MultiheadAttention): | ||
def __init__( | ||
self, | ||
embed_dim, | ||
num_heads, | ||
dropout=0, | ||
bias=True, | ||
add_bias_kv=False, | ||
add_zero_attn=False, | ||
kdim=None, | ||
vdim=None, | ||
batch_first=False, | ||
device=None, | ||
dtype=None, | ||
) -> None: | ||
super().__init__( | ||
embed_dim, | ||
num_heads, | ||
dropout, | ||
bias, | ||
add_bias_kv, | ||
add_zero_attn, | ||
kdim, | ||
vdim, | ||
batch_first, | ||
device, | ||
dtype, | ||
) | ||
|
||
def attention( | ||
self, | ||
q, | ||
k, | ||
v, | ||
batch_size=1, | ||
seqlen=77, | ||
softmax_scale=None, | ||
attention_dropout=0.0, | ||
causal=False, | ||
cu_seqlens=None, | ||
max_s=None, | ||
need_weights=False, | ||
): | ||
"""Implements the multihead softmax attention. | ||
Arguments | ||
--------- | ||
q,k,v: The tensor containing the query, key, and value. each of (B*S, H, D) | ||
key_padding_mask: a bool tensor of shape (B, S) | ||
""" | ||
assert not need_weights | ||
assert q.dtype in [torch.float16, torch.bfloat16] | ||
assert q.is_cuda | ||
|
||
if cu_seqlens is None: | ||
max_s = seqlen | ||
cu_seqlens = torch.arange( | ||
0, | ||
(batch_size + 1) * seqlen, | ||
step=seqlen, | ||
dtype=torch.int32, | ||
device=q.device, | ||
) | ||
output = flash_attn_unpadded_func( | ||
q, | ||
k, | ||
v, | ||
cu_seqlens, | ||
cu_seqlens, | ||
max_s, | ||
max_s, | ||
attention_dropout, | ||
softmax_scale=softmax_scale, | ||
causal=causal, | ||
) | ||
|
||
return output | ||
|
||
def forward( | ||
self, | ||
query: Tensor, | ||
key: Tensor, | ||
value: Tensor, | ||
key_padding_mask: Optional[Tensor] = None, | ||
need_weights: bool = False, | ||
attn_mask: Optional[Tensor] = None, | ||
average_attn_weights: bool = True, | ||
) -> Tuple[Tensor, Optional[Tensor]]: | ||
# set up shape vars | ||
seqlen, batch_size, embed_dim = query.shape | ||
|
||
# in-projection and rearrange `b s (h d) -> (b s) h d` | ||
q, k, v = linear(query, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) | ||
q = ( | ||
q.transpose(0, 1) | ||
.contiguous() | ||
.view(batch_size * seqlen, self.num_heads, self.head_dim) | ||
) | ||
k = ( | ||
k.transpose(0, 1) | ||
.contiguous() | ||
.view(batch_size * seqlen, self.num_heads, self.head_dim) | ||
) | ||
v = ( | ||
v.transpose(0, 1) | ||
.contiguous() | ||
.view(batch_size * seqlen, self.num_heads, self.head_dim) | ||
) | ||
|
||
# flash attention (use causal mask) | ||
causal = attn_mask is not None | ||
attn_output = self.attention(q, k, v, batch_size, seqlen, causal=causal) | ||
|
||
# out-projection | ||
# `(b s) h d -> s b (h d)` | ||
attn_output = attn_output.contiguous().view( | ||
batch_size, seqlen, self.num_heads, self.head_dim | ||
) | ||
attn_output = ( | ||
attn_output.transpose(0, 1).contiguous().view(seqlen, batch_size, embed_dim) | ||
) | ||
attn_output = linear(attn_output, self.out_proj.weight, self.out_proj.bias) | ||
|
||
return attn_output, None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters