This is the official code for SIGIR 2024 paper: 'Multi-intent-aware Session-based Recommendation'.
We implemented our model based on the recommedndation framework library RecBole v1.2.0) and CORE.
you can use the following command to install the environment
conda create -n miasrec python=3.8
conda activate miasrec
pip install -r requirements.txt
make dataset
folder and unzip dataset
folder
diginetica
, retailrocket
, yoochoose
, dressipi
, tmall
, lastfm
)
for DATASET in diginetica retailrocket yoochoose dressipi tmall lastfm
do
unzip $DATASET.zip -d dataset/$DATASET
done
python main.py --model miasrec --dataset diginetica --beta_logit 0.9
python main.py --model miasrec --dataset retailrocket --beta_logit 0.8
python main.py --model miasrec --dataset yoochoose --beta_logit 0.7
python main.py --model miasrec --dataset tmall --beta_logit 0.9
python main.py --model miasrec --dataset dressipi --beta_logit 0.9
python main.py --model miasrec --dataset lastfm --beta_logit 0.9
Please cite our papaer:
@article{choi2024multi,
title={Multi-intent-aware Session-based Recommendation},
author={Choi, Minjin and Kim, Hye-young and Cho, Hyunsouk and Lee, Jongwuk},
journal={arXiv preprint arXiv:2405.00986},
year={2024}
}