Skip to content

Commit

Permalink
The original implementation - slower.
Browse files Browse the repository at this point in the history
Keeping this here for reference. This was the original implementation - which was slightly more granular in patch updates, but 10x slower.
  • Loading branch information
jasonmayes authored Feb 24, 2020
1 parent 02bb8ce commit bf5d194
Showing 1 changed file with 248 additions and 0 deletions.
248 changes: 248 additions & 0 deletions script_original.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@

/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

/********************************************************************
* Real-Time-Person-Removal Created by Jason Mayes 2020.
*
* Get latest code on my Github:
* https://github.com/jasonmayes/Real-Time-Person-Removal
*
* Got questions? Reach out to me on social:
* Twitter: @jason_mayes
* LinkedIn: https://www.linkedin.com/in/creativetech
********************************************************************/

const video = document.getElementById('webcam');
const liveView = document.getElementById('liveView');
const demosSection = document.getElementById('demos');
const DEBUG = false;


// An object to configure parameters to set for the bodypix model.
// See github docs for explanations.
const bodyPixProperties = {
architecture: 'MobileNetV1',
outputStride: 16,
multiplier: 0.75,
quantBytes: 4
};

// An object to configure parameters for detection. I have raised
// the segmentation threshold to 90% confidence to reduce the
// number of false positives.
const segmentationProperties = {
flipHorizontal: false,
internalResolution: 'high',
segmentationThreshold: 0.9
};


// Must be even. The size of square we wish to search for body parts.
// This is the smallest area that will render/not render depending on
// if a body part is found in that square.
const SEARCH_RADIUS = 300;
const SEARCH_OFFSET = SEARCH_RADIUS / 2;

// RESOLUTION_MIN should be smaller than SEARCH RADIUS. About 10x smaller seems to
// work well. Effects overlap in search space to clean up body overspill for things
// that were not classified as body but infact were.
const RESOLUTION_MIN = 20;

// Render returned segmentation data to a given canvas context.
function processSegmentation(canvas, segmentation) {
var ctx = canvas.getContext('2d');

// Get data from our overlay canvas which is attempting to estimate background.
var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;

// Get data from the live webcam view which has all data.
var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);
var dataL = liveData.data;

// Now loop through and see if pixels contain human parts. If not, update
// backgound understanding with new data.
for (let x = RESOLUTION_MIN; x < canvas.width; x += RESOLUTION_MIN) {
for (let y = RESOLUTION_MIN; y < canvas.height; y += RESOLUTION_MIN) {
// Convert xy co-ords to array offset.
let n = y * canvas.width + x;

let foundBodyPartNearby = false;

// Let's check around a given pixel if any other pixels were body like.
let yMin = y - SEARCH_OFFSET;
yMin = yMin < 0 ? 0: yMin;

let yMax = y + SEARCH_OFFSET;
yMax = yMax > canvas.height ? canvas.height : yMax;

let xMin = x - SEARCH_OFFSET;
xMin = xMin < 0 ? 0: xMin;

let xMax = x + SEARCH_OFFSET;
xMax = xMax > canvas.width ? canvas.width : xMax;

for (let i = xMin; i < xMax; i++) {
for (let j = yMin; j < yMax; j++) {

let offset = j * canvas.width + i;
// If any of the pixels in the square we are analysing has a body
// part, mark as contaminated.
if (segmentation.data[offset] !== 0) {
foundBodyPartNearby = true;
break;
}
}
}

// Update patch if patch was clean.
if (!foundBodyPartNearby) {
for (let i = xMin; i < xMax; i++) {
for (let j = yMin; j < yMax; j++) {
// Convert xy co-ords to array offset.
let offset = j * canvas.width + i;

data[offset * 4] = dataL[offset * 4];
data[offset * 4 + 1] = dataL[offset * 4 + 1];
data[offset * 4 + 2] = dataL[offset * 4 + 2];
data[offset * 4 + 3] = 255;
}
}
} else {
if (DEBUG) {
for (let i = xMin; i < xMax; i++) {
for (let j = yMin; j < yMax; j++) {
// Convert xy co-ords to array offset.
let offset = j * canvas.width + i;

data[offset * 4] = 255;
data[offset * 4 + 1] = 0;
data[offset * 4 + 2] = 0;
data[offset * 4 + 3] = 255;
}
}
}
}

}
}
ctx.putImageData(imageData, 0, 0);
}



// Let's load the model with our parameters defined above.
// Before we can use bodypix class we must wait for it to finish
// loading. Machine Learning models can be large and take a moment to
// get everything needed to run.
var modelHasLoaded = false;
var model = undefined;

model = bodyPix.load(bodyPixProperties).then(function (loadedModel) {
model = loadedModel;
modelHasLoaded = true;
// Show demo section now model is ready to use.
demosSection.classList.remove('invisible');
});


/********************************************************************
// Continuously grab image from webcam stream and classify it.
********************************************************************/

var previousSegmentationComplete = true;

// Check if webcam access is supported.
function hasGetUserMedia() {
return !!(navigator.mediaDevices &&
navigator.mediaDevices.getUserMedia);
}


// This function will repeatidly call itself when the browser is ready to process
// the next frame from webcam.
function predictWebcam() {
if (previousSegmentationComplete) {
// Copy the video frame from webcam to a tempory canvas in memory only (not in the DOM).
videoRenderCanvasCtx.drawImage(video, 0, 0);
previousSegmentationComplete = false;
// Now classify the canvas image we have available.
model.segmentPerson(videoRenderCanvas, segmentationProperties).then(function(segmentation) {
processSegmentation(webcamCanvas, segmentation);
previousSegmentationComplete = true;
});
}

// Call this function again to keep predicting when the browser is ready.
window.requestAnimationFrame(predictWebcam);
}


// Enable the live webcam view and start classification.
function enableCam(event) {
if (!modelHasLoaded) {
return;
}

// Hide the button.
event.target.classList.add('removed');

// getUsermedia parameters.
const constraints = {
video: true
};

// Activate the webcam stream.
navigator.mediaDevices.getUserMedia(constraints).then(function(stream) {
video.addEventListener('loadedmetadata', function() {
// Update widths and heights once video is successfully played otherwise
// it will have width and height of zero initially causing classification
// to fail.
webcamCanvas.width = video.videoWidth;
webcamCanvas.height = video.videoHeight;
videoRenderCanvas.width = video.videoWidth;
videoRenderCanvas.height = video.videoHeight;
let webcamCanvasCtx = webcamCanvas.getContext('2d');
webcamCanvasCtx.drawImage(video, 0, 0);
});

video.srcObject = stream;

video.addEventListener('loadeddata', predictWebcam);
});
}


// We will create a tempory canvas to render to store frames from
// the web cam stream for classification.
var videoRenderCanvas = document.createElement('canvas');
var videoRenderCanvasCtx = videoRenderCanvas.getContext('2d');

// Lets create a canvas to render our findings to the DOM.
var webcamCanvas = document.createElement('canvas');
webcamCanvas.setAttribute('class', 'overlay');
liveView.appendChild(webcamCanvas);

// If webcam supported, add event listener to button for when user
// wants to activate it.
if (hasGetUserMedia()) {
const enableWebcamButton = document.getElementById('webcamButton');
enableWebcamButton.addEventListener('click', enableCam);
} else {
console.warn('getUserMedia() is not supported by your browser');
}

0 comments on commit bf5d194

Please sign in to comment.