Metrics-lib - A lightweight, ultra-high-performance metrics library for Rust. Purpose-built with minimal dependencies to maintain ultra-low overhead while delivering high-operation throughput, even under heavy loads. Built with native asynchronous support and cross-platform compatibility, Metrics-lib leverages lock-free atomic operations to ensure thread-safe data collection without performance bottlenecks across Windows, macOS, and Linux environments.
This library provides a comprehensive metrics system that includes counters, gauges, timers, sliding-window rate meters, adaptive sampling, and system health monitoring—all designed for production hot paths. The core architecture is lock-free on the hot path, allocation-free during steady state, and cache-aligned for minimal contention.
Built with resilience in mind, Metrics-lib includes features such as circuit breakers, adaptive sampling, backpressure control, and system health monitoring to ensure maximum-endurance and stability.
Optional async helpers, adaptive controls, and system health snapshots are available without imposing overhead when unused.
MSRV is 1.70+.
CI enforces formatting, lints, coverage (85% threshold), rustdoc warnings, and publish dry‑runs for reliability.
World-class performance with industry-leading benchmarks:
- Counter: 4.93ns/op (202.84M ops/sec)
- Gauge: 0.53ns/op (1886.79M ops/sec)
- Timer: 10.87ns/op (91.99M ops/sec)
- Memory: 64 bytes per metric (cache-aligned)
- 🔢 Counters - Atomic increment/decrement with overflow protection
- 📊 Gauges - IEEE 754 atomic floating-point with mathematical operations
- ⏱️ Timers - Nanosecond precision with RAII guards and batch recording
- 📈 Rate Meters - Sliding window rates with burst detection and API limiting
- 💾 System Health - Built-in CPU, memory, and process monitoring
- Lock-Free - Zero locks in hot paths, pure atomic operations
- Async Native - First-class async/await support with zero-cost abstractions
- Resilience - Circuit breakers, adaptive sampling, and backpressure control
- Cross-Platform - Linux, macOS, Windows with optimized system integrations
- Cache-Aligned - 64-byte alignment prevents false sharing
For a complete reference with examples, see docs/API.md
.
Counter
— ultra-fast atomic counters with batch and conditional opsGauge
— atomic f64 gauges with math ops, EMA, and min/max helpersTimer
— nanosecond timers, RAII guards, and closure/async timingRateMeter
— sliding-window rate tracking and burstsSystemHealth
— CPU, memory, load, threads, FDs, health score- Async support —
AsyncTimerExt
,AsyncMetricBatch
- Adaptive controls — sampling, circuit breaker, backpressure
- Prelude — convenient re-exports
All core metrics expose non-panicking try_
methods that validate inputs and return Result<_, MetricsError>
instead of panicking:
Counter
:try_inc
,try_add
,try_set
,try_fetch_add
,try_inc_and_get
Gauge
:try_set
,try_add
,try_sub
,try_set_max
,try_set_min
Timer
:try_record_ns
,try_record
,try_record_batch
RateMeter
:try_tick
,try_tick_n
,try_tick_if_under_limit
Error semantics:
MetricsError::Overflow
— arithmetic would overflow/underflow an internal counter.MetricsError::InvalidValue { reason }
— non-finite or otherwise invalid input (e.g., NaN forGauge
).MetricsError::OverLimit
— operation would exceed a configured limit (e.g., rate limiting helpers).
Example:
use metrics_lib::{init, metrics, MetricsError};
init();
let c = metrics().counter("jobs");
c.try_add(10)?; // Result<(), MetricsError>
let r = metrics().rate("qps");
let allowed = r.try_tick_if_under_limit(1000.0)?; // Result<bool, MetricsError>
Panic guarantees: the plain methods (inc
, add
, set
, tick
, etc.) prioritize speed and may saturate or assume valid inputs. Prefer try_
variants when you need explicit error handling.
Add to your Cargo.toml
:
[dependencies]
metrics-lib = "0.9.0"
# Optional features
metrics-lib = { version = "0.9.0", features = ["async"] }
use metrics_lib::{init, metrics};
// Initialize once at startup
init();
// Counters - fastest operations (18ns)
metrics().counter("requests").inc();
metrics().counter("errors").add(5);
// Gauges - sub-nanosecond operations (0.6ns)
metrics().gauge("cpu_usage").set(87.3);
metrics().gauge("memory_gb").add(1.5);
// Timers - automatic RAII timing
{
let _timer = metrics().timer("api_call").start();
// Your code here - automatically timed on drop
}
// Or time a closure
let result = metrics().time("db_query", || {
// Database operation
"user_data"
});
// System health monitoring
let cpu = metrics().system().cpu_used();
let memory_gb = metrics().system().mem_used_gb();
// Rate metering
metrics().rate("api_calls").tick();
- Integration Examples: see
docs/API.md#integration-examples
- Grafana dashboard (ready to import):
docs/observability/grafana-dashboard.json
- Prometheus recording rules:
docs/observability/recording-rules.yaml
- Kubernetes Service:
docs/k8s/service.yaml
- Prometheus Operator ServiceMonitor:
docs/k8s/servicemonitor.yaml
- Secured ServiceMonitor (TLS/Bearer):
docs/k8s/servicemonitor-secured.yaml
Commands
# Import Grafana dashboard via API
curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <GRAFANA_API_TOKEN>" \
http://<grafana-host>/api/dashboards/db \
-d @docs/observability/grafana-dashboard.json
# Validate Prometheus recording rules
promtool check rules docs/observability/recording-rules.yaml
# Apply Kubernetes manifests
kubectl apply -f docs/k8s/service.yaml
kubectl apply -f docs/k8s/servicemonitor.yaml
# For secured endpoints
kubectl apply -f docs/k8s/servicemonitor-secured.yaml
use std::time::Duration;
use metrics_lib::{metrics, AsyncMetricBatch, AsyncTimerExt};
// Async timing with zero overhead and typed result
let result: &str = metrics()
.timer("async_work")
.time_async(|| async {
tokio::time::sleep(Duration::from_millis(10)).await;
"completed"
})
.await;
// Batched async updates (flush takes &MetricsCore)
let mut batch = AsyncMetricBatch::new();
batch.counter_inc("requests", 1);
batch.gauge_set("cpu", 85.2);
batch.flush(metrics());
Run these self-contained examples to see the library in action:
-
Quick Start
- File:
examples/quick_start.rs
- Run:
cargo run --example quick_start --release
- File:
-
Streaming Rate Window
- File:
examples/streaming_rate_window.rs
- Run:
cargo run --example streaming_rate_window --release
- File:
-
Axum Registry Integration (minimal web service)
- File:
examples/axum_registry_integration.rs
- Run:
cargo run --example axum_registry_integration --release
- Endpoints:
GET /health
— liveness probeGET /metrics-demo
— updates metrics (counter/gauge/timer/rate)GET /export
— returns a JSON snapshot of selected metrics
- File:
-
Quick Tour
- File:
examples/quick_tour.rs
- Run:
cargo run --example quick_tour --release
- File:
-
Async Batch + Timing
- File:
examples/async_batch_timing.rs
- Run:
cargo run --example async_batch_timing --release
- File:
-
Token Bucket Rate Limiter
- File:
examples/token_bucket_limiter.rs
- Run:
cargo run --example token_bucket_limiter --release
- File:
-
Custom Exporter (OpenMetrics-like)
- File:
examples/custom_exporter_openmetrics.rs
- Run:
cargo run --example custom_exporter_openmetrics --release
- File:
-
Axum Middleware Metrics (minimal)
- File:
examples/axum_middleware_metrics.rs
- Run:
cargo run --example axum_middleware_metrics --release
- File:
-
Contention & Admission Demo
- File:
examples/contention_admission.rs
- Run:
cargo run --example contention_admission --release
- File:
-
CPU Stats Overview
- File:
examples/cpu_stats.rs
- Run:
cargo run --example cpu_stats --release
- File:
-
Memory Stats Overview
- File:
examples/memory_stats.rs
- Run:
cargo run --example memory_stats --release
- File:
-
Health Dashboard
- File:
examples/health_dashboard.rs
- Run:
cargo run --example health_dashboard --release
- File:
-
Cache Hit/Miss
- File:
examples/cache_hit_miss.rs
- Run:
cargo run --example cache_hit_miss --release
- File:
-
Broker Throughput
- File:
examples/broker_throughput.rs
- Run:
cargo run --example broker_throughput --release
- File:
- Building a Custom Exporter — see
docs/API.md
→ Building a Custom Exporter - Memory Stats: total/used/free + percentages — see
docs/API.md
→ Memory Stats - Memory % used for an operation (estimate) — see
docs/API.md
→ Memory % for an operation - CPU Stats: total/used/free + percentages — see
docs/API.md
→ CPU Stats - CPU % used for an operation (estimate) — see
docs/API.md
→ CPU % for an operation
For convenience, a helper script runs a curated set of non-blocking examples sequentially in release mode (skips server examples like Axum middleware):
bash tools/run_examples.sh
You can also pass a custom comma-separated list via EXAMPLES
:
EXAMPLES="quick_start,quick_tour,cpu_stats" bash tools/run_examples.sh
use metrics_lib::{AdaptiveSampler, SamplingStrategy, MetricCircuitBreaker};
// Adaptive sampling under load
let sampler = AdaptiveSampler::new(SamplingStrategy::Dynamic {
min_rate: 1,
max_rate: 100,
target_throughput: 10000,
});
if sampler.should_sample() {
metrics().timer("expensive_op").record(duration);
}
// Circuit breaker protection
let breaker = MetricCircuitBreaker::new(Default::default());
if breaker.is_allowed() {
// Perform operation
breaker.record_success();
} else {
// Circuit is open, skip operation
}
let health = metrics().system();
println!("CPU: {:.1}%", health.cpu_used());
println!("Memory: {:.1} GB", health.mem_used_gb());
println!("Load: {:.2}", health.load_avg());
println!("Threads: {}", health.thread_count());
Run the included benchmarks to see performance on your system:
# Basic performance comparison
cargo run --example benchmark_comparison --release
# Comprehensive benchmarks (Criterion)
cargo bench
# Cross-platform system tests
cargo test --all-features
- Criterion writes reports to
target/criterion/
with per-benchmark statistics and comparisons. - Key numbers to watch:
time: [low … mean … high]
and outlier percentages. - Compare runs over time to detect regressions. Store artifacts from CI for historical comparison.
- Benchmarks are microbenchmarks; validate with end-to-end measurements as needed.
- Pull Requests: CI runs a fast smoke bench and uploads
criterion-reports
withtarget/criterion
. - Nightly: The
Benchmarks
workflow runs full-duration benches on Linux/macOS/Windows and uploads artifacts asbenchmark-results-<os>
. - You can download these artifacts from the GitHub Actions run page to compare results across commits.
View the latest nightly results and artifacts here:
Latest CI Benchmarks (Benchmarks workflow)
Benchmark history (GitHub Pages):
Sample Results (M1 MacBook Pro):
Counter Increment: 4.93 ns/op (202.84 M ops/sec)
Gauge Set: 0.53 ns/op (1886.79 M ops/sec)
Timer Record: 10.87 ns/op (91.99 M ops/sec)
Mixed Operations: 106.39 ns/op (9.40 M ops/sec)
Notes: Latest numbers taken from local Criterion means under target/criterion/**/new/estimates.json
. Actual throughput varies by CPU and environment; use the GitHub Pages benchmark history for trends.
- Tooling: Criterion with release builds.
- Flags for stability on local runs:
cargo bench -- -w 3.0 -m 5.0 -n 100
(increase on dedicated runners). - Environment disclosure (example):
- CPU: Apple M1 Pro (performance cores)
- Rust: stable toolchain
- Target: aarch64-apple-darwin
- Governor: default (for CI use a performance governor where applicable)
See also: docs/zero-overhead-proof.md
for assembly inspection and binary size analysis, and docs/performance-tuning.md
for environment hardening.
- Atomic Operations: All metrics use
Relaxed
ordering for maximum performance - Cache-Line Alignment: 64-byte alignment eliminates false sharing
- Compare-and-Swap: Lock-free min/max tracking in timers
- Thread-Local Storage: Fast random number generation for sampling
#[repr(align(64))]
pub struct Counter {
value: AtomicU64, // 8 bytes
// 56 bytes padding to cache line boundary
}
- RAII Timers: Compile-time guaranteed cleanup
- Async Guards: No allocation futures for timing
- Batch Operations: Vectorized updates for efficiency
Comprehensive test suite with 87 unit tests and 2 documentation tests:
# Run all tests
cargo test
# Test with all features
cargo test --all-features
# Run only bench-gated tests (feature-flagged and ignored by default)
cargo test --features bench-tests -- --ignored
# Run benchmarks (Criterion)
cargo bench
# Check for memory leaks (with valgrind)
cargo test --target x86_64-unknown-linux-gnu
Tier 1 Support:
- ✅ Linux (x86_64, aarch64)
- ✅ macOS (x86_64, Apple Silicon)
- ✅ Windows (x86_64)
System Integration:
- Linux:
/proc
filesystem,sysinfo
APIs - macOS:
mach
system calls,sysctl
APIs - Windows: Performance counters, WMI integration
Graceful Fallbacks:
- Unsupported platforms default to portable implementations
- Feature detection at runtime
- No panics on missing system features
Library | Counter ns/op | Gauge ns/op | Timer ns/op | Memory/Metric | Features |
---|---|---|---|---|---|
metrics-lib | 4.93 | 0.53 | 10.87 | 64B | ✅ Async, Circuit breakers, System monitoring |
metrics-rs | 85.2 | 23.1 | 167.8 | 256B | |
prometheus | 156.7 | 89.4 | 298.3 | 1024B+ | |
statsd | 234.1 | 178.9 | 445.2 | 512B+ |
[dependencies]
metrics-lib = { version = "0.9.0", features = [
"async", # Async/await support (requires tokio)
"histogram", # Advanced histogram support
"all" # Enable all features
]}
use metrics_lib::{init_with_config, Config};
let config = Config {
max_metrics: 10000,
update_interval_ms: 1000,
enable_system_metrics: true,
};
init_with_config(config);
We welcome contributions! Please see our Contributing Guide.
# Clone repository
git clone https://github.com/jamesgober/metrics-lib.git
cd metrics-lib
# Run tests
cargo test --all-features
# Run benchmarks
cargo bench
# Check formatting and lints
cargo fmt --all -- --check
cargo clippy --all-features -- -D warnings
- 📚 Documentation
- 📦 Crates.io
- 🐛 Issues
- 💬 Discussions
- Migrating from metrics-rs:
docs/migrating-from-metrics-rs.md
- Performance Tuning:
docs/performance-tuning.md
- Zero-Overhead Proof:
docs/zero-overhead-proof.md
- API Stability Guarantees:
docs/api-stability.md
Licensed under the Apache License, version 2.0 (the "License"); you may not use this software, including, but not limited to the source code, media files, ideas, techniques, or any other associated property or concept belonging to, associated with, or otherwise packaged with this software except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the LICENSE file included with this project for the specific language governing permissions and limitations under the License.