Skip to content

R package for telematics data analysis

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

issactoast/ikhyd

Repository files navigation

I Know How You Drive (ikhyd)

Build Status

R package ikhyd is designed to make the driving behavior analysis using telematics data easier.

Prerequisite

Package installation and loading

To reproduce the research result, the ikhyd should be installed from github page, , using the following code:

# packages loading
devtools::install_github("issactoast/ikhyd")

After the installation, load package as follows:

library(ikhyd)
#> To cite this package use citation('ikhyd') 
#> 
#>  Text citation: 
#> 
#>  Issac Lee (2020). ikhyd : I Know How You Drive - Collection of R functions to make telematics analysis easier.
#>  R package version 0.1.0. URL https://github.com/issactoast/ikhyd

Google API

To use the visualization functions, the google map aip key should be fed into the function as an argument. Google API can be obtained the Google Maps Platform by following the registration instruction. The google map API service will charge $2 per 1000 requests however, $200 deposite will be added to the account per month. Thus, the personal usage is technically free but you need to register the credit card to use the service.

For example, track_vis() has the following structure:

track_vis(sample_trip$gps_data,
          api = your_google_api,
          zoom = 1)

How to access to data set

ikhyd package contains seven telematics files;

  1. Sample route telematics: sample_trip.csv
  2. Test route with OBD information:
    • trip_with_obd.csv
    • trip_with_obd.txt
  3. Driving telematics files:
    • driver1.csv
    • driver2.csv
    • driver3.csv
    • driver4.csv

Note that trip_with_obd.txt contains the OBD speed information which combines with telematics data generated by smartphone, trip_with_obd.csv.

To get the path of the each files, users can use system.file() in R. For example, the follow code will give you the path of sample_trip.csv;

system.file("extdata", "sample_trip.csv", package = "ikhyd")
#> [1] "C:/R/R-4.0.3/library/ikhyd/extdata/sample_trip.csv"

See help and actual code

You can check out the actual code in this instruction by typing the name of the R console. For example, examination the code of load_telematic_data() will be as follows:

load_telematic_data
#> function(file_path, all_in_one = FALSE, ...){
#>     if (all_in_one){
#>         gps_data   <- get_trip(file_path, data_option = 1)
#>         acc_data   <- get_trip(file_path, data_option = 2)
#>         lacc_data  <- get_trip(file_path, data_option = 3)
#>         gyro_data  <- get_trip(file_path, data_option = 4)
#>         angle_data <- get_trip(file_path, data_option = 5)
#>         speed_data <- get_trip(file_path, data_option = 6)
#>         result <- list(gps_data = gps_data,
#>                        acc_data = acc_data,
#>                        lacc_data = lacc_data,
#>                        gyro_data = gyro_data,
#>                        angle_data = angle_data,
#>                        speed_data = speed_data)
#>         return(result)
#>     } else {
#>         result <- get_trip(file_path, ...)
#>         return(result)
#>     }
#> }
#> <bytecode: 0x0000000013906a20>
#> <environment: namespace:ikhyd>

Also, the help page of each function is available via ?function_name().

?load_telematic_data()

Load trip data

When you have a path of telematics data, you can load the data using get_trip() with data_option arguments as follows:

# telematics file path
sample_trip_path <- system.file("extdata", "sample_trip.csv", package = "ikhyd")

# load data
sample_trip <- load_telematic_data(sample_trip_path, all_in_one = TRUE)
summary(sample_trip)
#>            Length Class      Mode
#> gps_data   6      data.frame list
#> acc_data   4      data.frame list
#> lacc_data  4      data.frame list
#> gyro_data  4      data.frame list
#> angle_data 4      data.frame list
#> speed_data 3      data.frame list

Visualization

GPS data

The snippet of gps_data for the sample trip looks as follows:

head(sample_trip$gps_data)
#>    time         x        y        z accuracy_horiz accuracy_vert
#> 1 0.000 -91.53799 41.66253 197.2922              5             4
#> 2 0.038 -91.53799 41.66253 197.2922              5             4
#> 3 0.079 -91.53799 41.66253 197.2821              5             4
#> 4 0.120 -91.53799 41.66253 197.2821              5             4
#> 5 0.153 -91.53799 41.66253 197.2821              5             4
#> 6 0.194 -91.53799 41.66253 197.2821              5             4

The GPS coordinates of the sample trip can be visualized with track_vis() in ikhyd package as in the following Figure:

track_vis(sample_trip$gps_data,
          api = your_google_api,
          zoom = 1)
Visulization of the GPS data of the sample trip by `track_vis()`

Visulization of the GPS data of the sample trip by `track_vis()`

The following figure shows the Speed information from GPS sensor stored in speed_data, which can be visualized with plot_speed() as follows:

plot_speed(sample_trip$speed_data, tripname = "the sample trip")
The result of `plot_speed()` code. It also supports many base plot arguments such as `xlim` in **R**

The result of `plot_speed()` code. It also supports many base plot arguments such as `xlim` in **R**

Accelerometer data

For accelerometer information, you can plot it by using plot_acc() function with an option of smoothing parameter rate. Also note that some base plot options such as xlim can be used.

The figure below is generated by the following code.

plot_acc(sample_trip$acc_data,
         rate = 0.2, 
         tripname = "the sample trip")
The result of `plot_acc()` code. `rate` is the smoothing parameter of low pass filter whose range between 0 to 1.

The result of `plot_acc()` code. `rate` is the smoothing parameter of low pass filter whose range between 0 to 1.

Calibration

Kalman filtering and smoothing operation of the sample trip can be reproduced by the following functions: kalmanfilter_telematics() and kalmansmooth_telematics().

The visualization of the Kalman filtered and smoothed telematics data can be done by the plot_telematics() function in the package.

# telematics file for longer trips
obdtrip_path <- system.file("extdata", "trip_with_obd.csv", package = "ikhyd")
obdtrip_path_obd <- system.file("extdata", "trip_with_obd.txt", package = "ikhyd")

Kalman filter

kalmanfilter_result <- kalmanfilter_telematics(obdtrip_path)
head(kalmanfilter_result)
#>    time       a_lon         a_lat         speed
#> 1 0.000 -0.07467497 -0.0001588679 -9.638167e-06
#> 2 0.008 -0.07553793 -0.0002927250 -1.418528e-03
#> 3 0.032 -0.06798833  0.0015284343 -2.687559e-03
#> 4 0.070 -0.06708123  0.0025836721 -5.449661e-03
#> 5 0.110 -0.05978903  0.0069970185 -7.162957e-03
#> 6 0.146 -0.05870658  0.0073854722 -1.039758e-02
plot_telematics(kalmanfilter_result)
Visualization of the Kalman filtering based calibration

Visualization of the Kalman filtering based calibration

Kalman smoothing

kalmansmooth_result <- kalmansmooth_telematics(obdtrip_path)
head(kalmansmooth_result)
#>    time        a_lon         a_lat         speed
#> 1 0.000 -0.018178654 -0.0009477862 -5.521131e-05
#> 2 0.008 -0.015930304 -0.0027629604 -1.351008e-03
#> 3 0.032 -0.011211523  0.0004643929 -2.445627e-03
#> 4 0.070 -0.011028800 -0.0007278596 -3.118022e-03
#> 5 0.110 -0.005712119  0.0010311522 -3.774068e-03
#> 6 0.146 -0.005964552 -0.0040115553 -3.954390e-03
plot_telematics(kalmansmooth_result)
Visualization of the Kalman smoothing based calibration

Visualization of the Kalman smoothing based calibration

Comparison with OBD data

# load OBD trip data for the comparison 
obd_trip <- load_telematic_data(obdtrip_path, 
                                all_in_one = TRUE)

# load obd information and calculate acceleration
speed_data_obd <- get_obd_trip(obdtrip_path_obd)
speed_data_obd <- acc_from_obd(speed_data_obd)

Root Mean Square Error (RMSE) of accelerometer (y-axis), Kalman filtered accelerations, and Kalman smoothed accelerations for the given trip are calculated as follows:

rmse <- function(x, y){
    sqrt(sum((x - y)^2))
}

RMSEresult <- data.frame(
    Methods = "RMSE",
    Accelerometer = rmse(obd_trip$acc_data$y, speed_data_obd$dv_dt),
    KalmanFilter = rmse(kalmanfilter_result$a_lon, speed_data_obd$dv_dt),
    KalmanSmooth = rmse(kalmansmooth_result$a_lon, speed_data_obd$dv_dt)
)
knitr::kable(RMSEresult)
Methods Accelerometer KalmanFilter KalmanSmooth
RMSE 100.877 76.94296 50.32388

OBD based speed and accelaration

Speed comparison: OBD vs. GPS

obd_trip$speed_data$obd_speed <- speed_data_obd$speed
plot_speed(obd_trip$speed_data, col = "red",
           tripname = "OBD trip")
Comparion of Speed: GPS(red) vs. OBD(black)

Comparion of Speed: GPS(red) vs. OBD(black)

Acceleration comparison: Accelerometer vs. OBD

plot_data <- data.frame(time = obd_trip$acc_data$time,
                        acc1 = obd_trip$acc_data$y,
                        acc2 = speed_data_obd$dv_dt)
plot_acc_compare(plot_data, 
                 sensor_name = c("Y-axis accelerometer(red)", "OBD(black)"),
                 xlim = c(0, 400))
Comparion of Acceleration: Accelerometer(red) vs. OBD(black)

Comparion of Acceleration: Accelerometer(red) vs. OBD(black)

Acceleration comparison: Kalman filtering vs. OBD

plot_data$acc1 <- kalmanfilter_result$a_lon
plot_acc_compare(plot_data, 
                 sensor_name = c("Kalman filtering(red)", "OBD(black)"),
                 xlim = c(0, 400))
Comparion of Acceleration: Kalman filter base(red) vs. OBD(black)

Comparion of Acceleration: Kalman filter base(red) vs. OBD(black)

Acceleration comparison: Kalman smoothing vs. OBD

plot_data$acc1 <- kalmansmooth_result$a_lon
plot_acc_compare(plot_data, 
                 sensor_name = c("Kalman smooth(red)", "OBD(black)"),
                 xlim = c(0, 400))
Comparion of Acceleration: Kalman smooth base(red) vs. OBD(black)

Comparion of Acceleration: Kalman smooth base(red) vs. OBD(black)

Heatmap visualization

Here is some example of visualization of telematics data; v-a heatmap suggested by Wuthrich (2017) and Lee and Shyamal (2019) the Lon-Lat plot suggested by The following code generates the v-a heatmap of the telematics data

# telematics file for driver 1 and 2
driver1_path <- system.file("extdata", "driver1.csv", package = "ikhyd")
driver2_path <- system.file("extdata", "driver2.csv", package = "ikhyd")

telematics_driver1 <- kalmansmooth_telematics(driver1_path)
telematics_driver2 <- kalmansmooth_telematics(driver2_path)

Heatmap (V-A)

draw_vaHeatmap(telematics_driver1)
draw_vaHeatmap(telematics_driver2)

Reproduce V-A heatmap result for 2 driversReproduce V-A heatmap result for 2 drivers

Reproduce V-A heatmap result for 2 drivers

Heatmap (Lon-Lat)

par(mar = c(4, 4, .1, .1))
drawHeatmap(telematics_driver1)
drawHeatmap(telematics_driver2)

Reproduce Lon-Lat plot result for drivers; 1 and 2Reproduce Lon-Lat plot result for drivers; 1 and 2

Reproduce Lon-Lat plot result for drivers; 1 and 2

License

Provided under the terms of the MIT License.

Copyright © 2019-2020, Issac Lee.

About

R package for telematics data analysis

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages