Skip to content

isidorostsa/cuda_fglt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

How to run on AUTH's HPC

  1. First edit the ASSETS variable inside the script.sh to point a directory that contains all the graph files (auto.mtx com-Youtube.mtx delaunay_n22.mtx great-britain_osm.mtx s12.mtx).

  2. Then run sbatch ./script.sh

  3. Finally you will get a slurm-jobid.out file that contains 3 runs from each graphs (the time metric is microseconds).

Commands make the project

Prerequisites

Commands to start the container

sudo docker run --rm --gpus all -it -e CUDBG_USE_LEGACY_DEBUGGER=1 --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD:/cuda_project -w /cuda_project nvidia/cuda:12.0.1-devel-ubuntu20.04
  • -e means export CUDBG_USE_LEGACY_DEBUGGER=1
  • --cap-add=SYS_PTRACE --security-opt seccomp=unconfined is for gdb
  • -v $PWD:/cuda_project -w /cuda_project is for mounting current directory to /cuda_project in container
  • nvidia/cuda:12.0.1-devel-ubuntu20.04 is the image name (Works in Pop!_OS 22.04)
  • add -it before nvidia/cuda:12.0.1-devel-ubuntu20.04 to run the container in interactive mode

Commands to compile

Compile

make {ARGS}

with ARGS as:

  • BUILD_TYPE=debug or BUILD_TYPE=release
  • BUILD_ENV=container or BUILD_ENV=host

Run

./bin/fglt

or

./bin_debug/fglt

About

Fast Graphlet Transform with CUDA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •