Skip to content

ipdgc/GP2-visualise-longitudinal-variant-effects

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Logo

Visualize longitudinal and cross-sectional variant effects

One of the projects from the 2021 GP2/IPDGC Hackathon. The related manuscript can be found on [biorxiv](https://www.biorxiv.org/content/10.1101/2022.05.04.490670v1)
Contributers: Michael Ta, Alejandro Martinez-Carrasco, Clodagh Towns, Regina Reynolds, María Teresa Periñán, Nikita Pillay

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Acknowledgments

About The Project

Project Screen Shot

Quick Description

The goal for this project was to visualize longitudinal and cross-sectional variant effects from GWAS.

Background/motivation

Longitudinal biomarker data is needed to understand the progression of disease and allow for easier testing and diagnosis. This tool takes results from biomarker GWAS to allow researchers to be able to query for a particular biomarker and get a visualisation of the effect on all cohorts or a set of cohorts, as well as the associated meta-analysis. It also adds the ability to display longitudinal information alongside cross-sectional results.

Workflow Summary

  1. Download/clone repository.
  2. Install necessary packages.
  3. Open app.R in R Studio.
  4. Click 'Run App' button in R Studio.
  5. Visualize!

(back to top)

Getting Started

Prerequisites

Installation

  1. Clone the repo
    git clone https://github.com/ipdgc/GP2-visualise-longitudinal-variant-effects.git

(back to top)

Usage

There is already example data from biomarker GWAS conducted with the PPMI cohort. However you can upload your own GWAS statistics using the upload tab on the app!

Make sure the necessary packages are installed, they are listed in app.R. All packages except 'ggforestplot' can be installed with install.packages(). 'ggforestplot' can be installed like this:

install.packages('devtools')
devtools::install_github("NightingaleHealth/ggforestplot")

If you wish to visualize your own variant effects, input data should look like this:

#CHROM POS ID REF ALT A1 A1_FREQ TEST OBS_CT BETA SE T_STAT P OBS_CT_rep
22 15226216 chr22:15226216:GC:G GC G G 0.00852273 ADD_REP 176 -0.0723873 0.25866336 -9 0.77959159 687
22 15279243 chr22:15279243:A:T A T T 0.00568182 ADD_REP 176 0.11891265 0.30542448 -9 0.69702783 687
22 15284730 chr22:15284730:C:G C G G 0.00568182 ADD_REP 176 -0.1478226 0.31534816 -9 0.63924118 687
22 15306199 chr22:15306199:A:T A T T 0.01420455 ADD_REP 176 -0.0959635 0.19529632 -9 0.62316195 687
22 15308575 chr22:15308575:A:T A T T 0.01136364 ADD_REP 176 -0.2816581 0.2177098 -9 0.19575805 687

(back to top)

Acknowledgments

About

IPDGC x GP2 Hackathon 2021 Project - Visualize longitudinal and cross-sectional variant effects

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 5

Languages