Skip to content

intelligent-environments-lab/CityLearn

Repository files navigation

CityLearn

CityLearn is an open source Farama Foundation Gymnasium environment for the implementation of Multi-Agent Reinforcement Learning (RL) for building energy coordination and demand response in cities. A major challenge for RL in demand response is the ability to compare algorithm performance. Thus, CityLearn facilitates and standardizes the evaluation of RL agents such that different algorithms can be easily compared with each other.

Demand-response

Environment Overview

CityLearn includes energy models of buildings and distributed energy resources (DER) including air-to-water heat pumps, electric heaters and batteries. A collection of building energy models makes up a virtual district (a.k.a neighborhood or community). In each building, space cooling, space heating and domestic hot water end-use loads may be independently satisfied through air-to-water heat pumps. Alternatively, space heating and domestic hot water loads can be satisfied through electric heaters.

Citylearn

Installation

Install latest release in PyPi with pip:

pip install CityLearn

Documentation

Refer to the docs.

CityLearn UI

CityLearn UI is a visual dashboard for exploring simulation data generated by the CityLearn framework. It was developed to simplify the analysis of results from smart energy communities, district energy coordination, demand response (among other applications), allowing users to visually inspect building-level components, compare simulation KPIs, and create simulation schemas with ease.

The interface is available in two options:

You can check a tutorial at the official CityLearn website, in the CityLearn UI repository README, or at the help tooltip of the oficial webapp.

Compatibility: This version of the UI currently supports CityLearn v2.5.0 simulation data.

Developed by: José, a member of the SoftCPS, Software for Cyber-Physical Systems research group (ISEP, Portugal) in collaboration with the Intelligent Environments Lab, University of Texas at Austin.

About

Official reinforcement learning environment for demand response and load shaping

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 12