Skip to content

ihsannurfaqih/Explainable-AI-Bootcamp

Repository files navigation

Explainable AI Bootcamp

Tools used in this project

Project structure

.
├── config                      
│   ├── main.yaml                   # Main configuration file
│   ├── model                       # Configurations for training model
│   │   ├── model1.yaml             # First variation of parameters to train model
│   │   └── model2.yaml             # Second variation of parameters to train model
│   └── process                     # Configurations for processing data
│       ├── process1.yaml           # First variation of parameters to process data
│       └── process2.yaml           # Second variation of parameters to process data
├── data            
│   ├── final                       # data after training the model
│   ├── processed                   # data after processing
│   ├── raw                         # raw data
│   └── raw.dvc                     # DVC file of data/raw
├── docs                            # documentation for your project
├── dvc.yaml                        # DVC pipeline
├── .flake8                         # configuration for flake8 - a Python formatter tool
├── .gitignore                      # ignore files that cannot commit to Git
├── Makefile                        # store useful commands to set up the environment
├── models                          # store models
├── notebooks                       # store notebooks
├── .pre-commit-config.yaml         # configurations for pre-commit
├── pyproject.toml                  # dependencies for poetry
├── README.md                       # describe your project
├── src                             # store source code
│   ├── __init__.py                 # make src a Python module 
│   ├── process.py                  # process data before training model
│   └── train_model.py              # train model
└── tests                           # store tests
    ├── __init__.py                 # make tests a Python module 
    ├── test_process.py             # test functions for process.py
    └── test_train_model.py         # test functions for train_model.py

Set up the environment

  1. Install Poetry
  2. Set up the environment:
make activate
make setup

Install new packages

To install new PyPI packages, run:

poetry add <package-name>

Run the entire pipeline

To run the entire pipeline, type:

dvc repo

Version your data

Read this article on how to use DVC to version your data.

Basically, you start with setting up a remote storage. The remote storage is where your data is stored. You can store your data on DagsHub, Google Drive, Amazon S3, Azure Blob Storage, Google Cloud Storage, Aliyun OSS, SSH, HDFS, and HTTP.

dvc remote add -d remote <REMOTE-URL>

Commit the config file:

git commit .dvc/config -m "Configure remote storage"

Push the data to remote storage:

dvc push 

Add and push all changes to Git:

git add .
git commit -m 'commit-message'
git push origin <branch>

Auto-generate API documentation

To auto-generate API document for your project, run:

make docs

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published