Skip to content
/ word2box Public

Capturing Set-Theoretic Semantics of Words using Box Embeddings

Notifications You must be signed in to change notification settings

iesl/word2box

Folders and files

NameName
Last commit message
Last commit date

Latest commit

067fe9b · Jul 16, 2022

History

3 Commits
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022
Jul 16, 2022

Repository files navigation

Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings

Using boxes for word representations

Dev Instructions

conda create -n word2box python=3.8
conda activate word2box
conda install pytorch==1.7.1 -c pytorch
git clone {repo-url} --recurse-submodules
cd word2box
pip install -e lib/*
pip install -e .

Usage

This package will install a command accessible as follows:

language-modeling-with-boxes --help

(You can also access this via the script in /bin/language-modeling-with-boxes, which can be useful to provide a "handle" for debuggers, for instance.)

Training

To get description of all the hyper paramer options run the following.

language-modeling-with-boxes train --help

One example command to run training -

bin/language-modeling-with-boxes train \
 --batch_size=4096 --box_type=BoxTensor \
 --data_device=gpu \
 --dataset= ptb `Please change this to your dataset` \
 --embedding_dim=64 \
 --eval_file=./data/similarity_datasets/ \
 --int_temp=1.9678289474987882 \
 --log_frequency=10 \
 --loss_fn=max_margin \
 --lr=0.004204091643267762 \
 --margin=5 \
 --model_type=Word2BoxConjunction \
 --n_gram=5 \
 --negative_samples=2 \
 --num_epochs=10 \
 --subsample_thresh=0.001 \
 --vol_temp=0.33243242379830407 \
 --save_model \
 --add_pad \
 -- save_dir `Please change this to your dataset` 

About

Capturing Set-Theoretic Semantics of Words using Box Embeddings

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages