Skip to content
/ CE2ERE Public

Constrained learning using boxes for event-event relation extraction

Notifications You must be signed in to change notification settings

iesl/CE2ERE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e611337 · Aug 5, 2022
Jan 15, 2022
Jan 15, 2022
Jan 15, 2022
Jul 17, 2021
Jan 13, 2022
Mar 10, 2021
Aug 5, 2022
Jan 25, 2021
Mar 10, 2021
Jan 25, 2021
Mar 10, 2021
Mar 12, 2021
Jul 7, 2021
Jan 13, 2022

Repository files navigation

Event-Event Relation Extraction using Probabilistic Box Embedding

This is the repository for the Paper "Event-Event Relation Extraction using Probabilistic Box Embedding". This repository contains the source code and datasets used in our paper.

Abstract

To understand a story with multiple events, it is important to capture the proper relations across these events. However, existing event relation extraction (ERE) framework regards it as a multi-class classification task and do not guarantee any coherence between different relation types, such as anti-symmetry. If a phone line "died" after "storm", then it is obvious that the "storm" happened before the "died". Current framework of event relation extraction do not guarantee this coherence and thus enforces it via constraint loss function (Wang et al., 2020). In this work, we propose to modify the underlying ERE model to guarantee coherence by representing each event as a box representation (BERE) without applying explicit constraints. From our experiments, BERE also shows stronger conjunctive constraint satisfaction while performing on par or better in F1 compared to previous models with constraint injection.

How to run the code

Environment Setup et al.

git clone https://github.com/iesl/CE2ERE.git
conda env create -n bere -f environment.yml
pip install -r requirements.txt
python -m spacy download en_core_web_sm

Tested with Python 3.8 and PyTorch 1.7.

Example Command

Command for BERE-p on Joint task

python src/main.py --const_eval=0 --data_dir=data --data_type=joint --downsample=0.015 --epochs=150 --eval_step=1 --eval_type=two --intersection_temp=0.0005 --lambda_anno=0 --lambda_condi_h=0.1 --lambda_condi_m=1 --lambda_cross=0 --lambda_pair_h=0.4 --lambda_pair_m=0.8 --lambda_trans=0 --learning_rate=0.0001 --log_batch_size=4 --loss_type=4 --lstm_hidden_size=256 --lstm_input_size=768 --max_grad_norm=10 --mlp_size=512 --model=box --model_save=1 --num_layers=1 --patience=20 --proj_output_dim=640 --save_plot=0 --threshold1=-0.3 --threshold2=-0.7 --volume_temp=5

(BERE - loss_type=0, BERE-p - loss_type=4, BERE-c - loss_type=3)

Reference

Bibtex:

@article{ehwang-bere22,
  title={Event-Event Relation Extraction using Probabilistic Box Embedding},
  author={EunJeong Hwang, Jay-Yoon Lee, Tianyi Yang, Dhruvesh Patel, Dongxu Zhang, Andrew McCallum},
  journal={ACL},
  year={2022}
}