This is the repositotry of GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews Paper | Code
- We use python 3.10 and CUDA 12.1
module load miniconda/3
module load cuda12
- First, create a virtual environment using:
conda create -n glimpse python=3.10
- Second, activate the environment and install pytorch:
conda activate glimpse
conda install pytorch==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia
- Finally, all remaining required packages could be installed with the requirements file:
pip install -r requirements
Step 1: Start by processing the input files from data.
python glimpse/data_loading/data_processing.py
Step 2: Now, we generate candidate summaries and compute RSA scores for each candidate
- for extractive candidates, use the following command:
sbatch scripts/extractive.sh Path_of_Your_Processed_Dataset_Step1.csv
- for abstractive candidates, use either of the following commands:
- In case the last batch is incomplete, you can add padding using
--add-padding
argument to complete it:
sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv --add-padding
- If you want to remove the last incomplete batch, you can run the script without the argument:
sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv
- In case the last batch is incomplete, you can add padding using
rsasumm/
provides a python package with an implementation of RSA incremental decoding and RSA reranking of candidates.
mds/
provides the experiment scripts and analysis for the MultiDocument Summarization task.
If you use this code, please cite the following papers:
title={GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews},
author={Maxime Darrin and Ines Arous and Pablo Piantanida and Jackie CK Cheung},
year={2024},
eprint={2406.07359},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.07359},
}