Skip to content

iLucky7/CarND-Kidnapped-Vehicle-Project

 
 

Repository files navigation

Kidnapped Vehicle project

Use particle filter to localize the accurate position.

Sensor

  1. GPS data use GPS signal to make transition matrix. Converting the observations in vehicle coordinate into global coordinate.
  2. invehicle sensor extract yaw and velocity.(actually, it also can derived from GPS data , but it maybe not so accurate)

Particle fitler

1.Initialization

2.using vehicle motion model to predict the next vehicle position

3.using updated state and sensor value , by converting the coordinate between vehicle and map , we can calculate the particles' weights. Particles far away from predicted state that have small weights. by using these weights, algorithm generates the actual vehicle position

4.resample the weight. by using the wheel theory in udacity class, weights are resample in order to use in next step.

Simulator Run Capture

Success Run Capture

Environment

  1. Docker windows
  2. github online code editor

References

  1. Udacity class
  2. darienmt
  3. mvirgo
  4. rtsaad
  5. bguisard
  6. sebastian-sampayo

Summary

  • Particle filter is a great algorithm . It doesn't linearize the complex vehicle model, it just using probability to approximate the result. But it needs a lot of computation. How to extract the feature of the efficient particles (weight) is very important thing.
  • Particle filter's particles quantity bigger, the better result it returns

Overview

This repository contains all the code needed to complete the final project for the Localization course in Udacity's Self-Driving Car Nanodegree.

Submission

All you will submit is your completed version of particle_filter.cpp, which is located in the src directory. You should probably do a git pull before submitting to verify that your project passes the most up-to-date version of the grading code (there are some parameters in src/main.cpp which govern the requirements on accuracy and run time.)

Project Introduction

Your robot has been kidnapped and transported to a new location! Luckily it has a map of this location, a (noisy) GPS estimate of its initial location, and lots of (noisy) sensor and control data.

In this project you will implement a 2 dimensional particle filter in C++. Your particle filter will be given a map and some initial localization information (analogous to what a GPS would provide). At each time step your filter will also get observation and control data.

Running the Code

This project involves the Term 2 Simulator which can be downloaded here

This repository includes two files that can be used to set up and intall uWebSocketIO for either Linux or Mac systems. For windows you can use either Docker, VMware, or even Windows 10 Bash on Ubuntu to install uWebSocketIO.

Once the install for uWebSocketIO is complete, the main program can be built and ran by doing the following from the project top directory.

  1. mkdir build
  2. cd build
  3. cmake ..
  4. make
  5. ./particle_filter

Alternatively some scripts have been included to streamline this process, these can be leveraged by executing the following in the top directory of the project:

  1. ./clean.sh
  2. ./build.sh
  3. ./run.sh

Tips for setting up your environment can be found here

Note that the programs that need to be written to accomplish the project are src/particle_filter.cpp, and particle_filter.h

The program main.cpp has already been filled out, but feel free to modify it.

Here is the main protcol that main.cpp uses for uWebSocketIO in communicating with the simulator.

INPUT: values provided by the simulator to the c++ program

// sense noisy position data from the simulator

["sense_x"]

["sense_y"]

["sense_theta"]

// get the previous velocity and yaw rate to predict the particle's transitioned state

["previous_velocity"]

["previous_yawrate"]

// receive noisy observation data from the simulator, in a respective list of x/y values

["sense_observations_x"]

["sense_observations_y"]

OUTPUT: values provided by the c++ program to the simulator

// best particle values used for calculating the error evaluation

["best_particle_x"]

["best_particle_y"]

["best_particle_theta"]

//Optional message data used for debugging particle's sensing and associations

// for respective (x,y) sensed positions ID label

["best_particle_associations"]

// for respective (x,y) sensed positions

["best_particle_sense_x"] <= list of sensed x positions

["best_particle_sense_y"] <= list of sensed y positions

Your job is to build out the methods in particle_filter.cpp until the simulator output says:

Success! Your particle filter passed!

Implementing the Particle Filter

The directory structure of this repository is as follows:

root
|   build.sh
|   clean.sh
|   CMakeLists.txt
|   README.md
|   run.sh
|
|___data
|   |   
|   |   map_data.txt
|   
|   
|___src
    |   helper_functions.h
    |   main.cpp
    |   map.h
    |   particle_filter.cpp
    |   particle_filter.h

The only file you should modify is particle_filter.cpp in the src directory. The file contains the scaffolding of a ParticleFilter class and some associated methods. Read through the code, the comments, and the header file particle_filter.h to get a sense for what this code is expected to do.

If you are interested, take a look at src/main.cpp as well. This file contains the code that will actually be running your particle filter and calling the associated methods.

Inputs to the Particle Filter

You can find the inputs to the particle filter in the data directory.

The Map*

map_data.txt includes the position of landmarks (in meters) on an arbitrary Cartesian coordinate system. Each row has three columns

  1. x position
  2. y position
  3. landmark id

All other data the simulator provides, such as observations and controls.

  • Map data provided by 3D Mapping Solutions GmbH.

Success Criteria

If your particle filter passes the current grading code in the simulator (you can make sure you have the current version at any time by doing a git pull), then you should pass!

The things the grading code is looking for are:

  1. Accuracy: your particle filter should localize vehicle position and yaw to within the values specified in the parameters max_translation_error and max_yaw_error in src/main.cpp.

  2. Performance: your particle filter should complete execution within the time of 100 seconds.

How to write a README

A well written README file can enhance your project and portfolio. Develop your abilities to create professional README files by completing this free course.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 99.6%
  • Other 0.4%