Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Decay learning rate #39

Open
wants to merge 17 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 30 additions & 6 deletions model.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@
import numpy as np

class Model():
def __init__(self, args, infer=False):
def __init__(self, args, training=True):
self.args = args
if infer:
if not training:
args.batch_size = 1
args.seq_length = 1

Expand All @@ -22,6 +22,9 @@ def __init__(self, args, infer=False):

cell = cell_fn(args.rnn_size)

if training and args.keep_prob < 1:
cell = rnn_cell.DropoutWrapper(cell, output_keep_prob=args.keep_prob)

self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)

self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
Expand All @@ -33,20 +36,38 @@ def __init__(self, args, infer=False):
self.batch_time = tf.Variable(0.0, name="batch_time", trainable=False)
tf.summary.scalar("time_batch", self.batch_time)

def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
#with tf.name_scope('stddev'):
# stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
#tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
#tf.summary.histogram('histogram', var)

with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
variable_summaries(softmax_w)
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
variable_summaries(softmax_b)
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data))
inputs = tf.nn.embedding_lookup(embedding, self.input_data)
if training and args.keep_prob < 1:
inputs = tf.nn.dropout(inputs, args.keep_prob)

inputs = tf.split(1, args.seq_length, inputs)
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]

def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)

outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if not training else None, scope='rnnlm')
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
Expand All @@ -57,12 +78,15 @@ def loop(prev, _):
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
tf.summary.scalar("cost", self.cost)
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.lr = tf.train.exponential_decay(args.learning_rate, self.global_step,
args.decay_step, args.decay_rate)
tf.summary.scalar("learning_rate", self.lr)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step)

def sample(self, sess, words, vocab, num=200, prime='first all', sampling_type=1):
state = sess.run(self.cell.zero_state(1, tf.float32))
Expand Down
2 changes: 1 addition & 1 deletion sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def sample(args):
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'words_vocab.pkl'), 'rb') as f:
words, vocab = cPickle.load(f)
model = Model(saved_args, True)
model = Model(saved_args, training=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
Expand Down
17 changes: 11 additions & 6 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,10 @@ def main():
help='learning rate')
parser.add_argument('--decay_rate', type=float, default=0.97,
help='decay rate for rmsprop')
parser.add_argument('--keep_prob', type=float, default=1.0,
help = 'probability of keeping weights in the dropout layer')
parser.add_argument('--gpu_mem', type=float, default=0.666,
help='% of gpu memory to be allocated to this process. Default is 66.6%')
parser.add_argument('--init_from', type=str, default=None,
help="""continue training from saved model at this path. Path must contain files saved by previous training process:
'config.pkl' : configuration;
Expand All @@ -50,6 +54,7 @@ def main():
def train(args):
data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length)
args.vocab_size = data_loader.vocab_size
args.decay_step = data_loader.num_batches

# check compatibility if training is continued from previously saved model
if args.init_from is not None:
Expand Down Expand Up @@ -83,16 +88,16 @@ def train(args):

merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('logs')
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_mem)

with tf.Session() as sess:
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
train_writer.add_graph(sess.graph)
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
# restore model
if args.init_from is not None:
saver.restore(sess, ckpt.model_checkpoint_path)
for e in range(model.epoch_pointer.eval(), args.num_epochs):
sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
data_loader.reset_batch_pointer()
state = sess.run(model.initial_state)
speed = 0
Expand All @@ -109,15 +114,15 @@ def train(args):
x, y = data_loader.next_batch()
feed = {model.input_data: x, model.targets: y, model.initial_state: state,
model.batch_time: speed}
summary, train_loss, state, _, _ = sess.run([merged, model.cost, model.final_state,
summary, train_loss, lr, state, _, _ = sess.run([merged, model.cost, model.lr, model.final_state,
model.train_op, model.inc_batch_pointer_op], feed)
train_writer.add_summary(summary, e * data_loader.num_batches + b)
speed = time.time() - start
if (e * data_loader.num_batches + b) % args.batch_size == 0:
print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
.format(e * data_loader.num_batches + b,
print("{}/{} (epoch {}), lr = {:.6f}, train_loss = {:.3f}, time/batch = {:.3f}" \
.format(e * data_loader.num_batches + b,
args.num_epochs * data_loader.num_batches,
e, train_loss, speed))
e, lr, train_loss, speed))
if (e * data_loader.num_batches + b) % args.save_every == 0 \
or (e==args.num_epochs-1 and b == data_loader.num_batches-1): # save for the last result
checkpoint_path = os.path.join(args.save_dir, 'model.ckpt')
Expand Down