Skip to content

Commit

Permalink
[i18n-ar] Translated file : docs/source/ar/multilingual.md into Ara…
Browse files Browse the repository at this point in the history
…bic (#33048)

* Add docs/source/ar/multilingual.md to Add_docs_source_ar_multilingual.md

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update docs/source/ar/multilingual.md

Co-authored-by: Abdullah Mohammed <[email protected]>

* Update _toctree.yml

* Update _toctree.yml

* Add Translated files to branch for merg

* Update _toctree.yml

* Update _toctree.yml

* Update custom_models.md

* Update chat_templating.md

* Update docs/source/ar/create_a_model.md

Co-authored-by: Steven Liu <[email protected]>

* Update create_a_model.md

* Update gguf.md

* Update gguf.md

* Update gguf.md

* Update gguf.md

---------

Co-authored-by: Abdullah Mohammed <[email protected]>
Co-authored-by: Steven Liu <[email protected]>
  • Loading branch information
3 people authored Oct 31, 2024
1 parent 2801d7b commit b53e44e
Show file tree
Hide file tree
Showing 7 changed files with 1,895 additions and 12 deletions.
24 changes: 12 additions & 12 deletions docs/source/ar/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -111,22 +111,22 @@
- sections:
- local: fast_tokenizers
title: استخدم مجزئيات النصوص السريعة من 🤗 Tokenizers
# - local: multilingual
# title: تشغيل الاستنتاج باستخدام نماذج متعددة اللغات
# - local: create_a_model
# title: استخدام واجهات برمجة التطبيقات الخاصة بالنموذج
# - local: custom_models
# title: مشاركة نموذج مخصص
# - local: chat_templating
# title: قوالب لنماذج الدردشة
- local: multilingual
title: الاستدلال باستخدام نماذج متعددة اللغات
- local: create_a_model
title: استخدام واجهات برمجة التطبيقات الخاصة بالنموذج
- local: custom_models
title: مشاركة نموذج مخصص
- local: chat_templating
title: قوالب لنماذج الدردشة
# - local: trainer
# title: المدرب
# - local: sagemaker
# title: تشغيل التدريب على Amazon SageMaker
# - local: serialization
# title: التصدير إلى ONNX
# - local: tflite
# title: التصدير إلى TFLite
- local: tflite
title: التصدير إلى TFLite
# - local: torchscript
# title: التصدير إلى TorchScript
# - local: benchmarks
Expand All @@ -137,8 +137,8 @@
# title: موارد المجتمع
# - local: troubleshooting
# title: استكشاف الأخطاء وإصلاحها
# - local: gguf
# title: التوافق مع ملفات GGUF
- local: gguf
title: التوافق مع ملفات GGUF
title: أدلة المطورين
# - sections:
# - local: quantization/overview
Expand Down
835 changes: 835 additions & 0 deletions docs/source/ar/chat_templating.md

Large diffs are not rendered by default.

436 changes: 436 additions & 0 deletions docs/source/ar/create_a_model.md

Large diffs are not rendered by default.

323 changes: 323 additions & 0 deletions docs/source/ar/custom_models.md

Large diffs are not rendered by default.

89 changes: 89 additions & 0 deletions docs/source/ar/gguf.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# GGUF وتفاعلها مع المحولات

تُستخدم صيغة ملف GGUF لتخزين النماذج للاستدلال باستخدام [GGML](https://github.com/ggerganov/ggml) والمكتبات الأخرى التي تعتمد عليه، مثل [llama.cpp](https://github.com/ggerganov/llama.cpp) أو [whisper.cpp](https://github.com/ggerganov/whisper.cpp) الشهيرة جدًا.

إنها صيغة ملف [مدعومة من قبل Hugging Face Hub](https://huggingface.co/docs/hub/en/gguf) مع ميزات تسمح بالفحص السريع للموترات والبيانات الوصفية داخل الملف.

تم تصميم تنسيق الملف هذا كـ "تنسيق ملف واحد" حيث يحتوي ملف واحد عادةً على كل من سمات التكوين ومفردات المجزىء اللغوي والخصائص الأخرى، بالإضافة إلى جميع الموترات التي سيتم تحميلها في النموذج. تأتي هذه الملفات بتنسيقات مختلفة وفقًا لنوع التكميم في الملف. نلقي نظرة موجزة على بعضها [هنا](https://huggingface.co/docs/hub/en/gguf#quantization-types).

## الدعم داخل المحولات

أضفنا القدرة على تحميل ملفات `gguf` داخل `المحولات` لتوفير قدرات تدريب/ضبط إضافية لنماذج gguf، قبل إعادة تحويل تلك النماذج إلى `gguf` لاستخدامها داخل نظام `ggml`. عند تحميل نموذج، نقوم أولاً بإلغاء تكميمه إلى fp32، قبل تحميل الأوزان لاستخدامها في PyTorch.

> [!NOTE]
> لا يزال الدعم تجريبيًا للغاية ونرحب بالمساهمات من أجل ترسيخه عبر أنواع التكميم وبنى النماذج.
فيما يلي، بنيات النماذج وأنواع التكميم المدعومة:

### أنواع التكميم المدعومة

تُحدد أنواع التكميم المدعومة مبدئيًا وفقًا لملفات التكميم الشائعة التي تمت مشاركتها على Hub.

- F32
- F16
- BF16
- Q4_0
- Q4_1
- Q5_0
- Q5_1
- Q8_0
- Q2_K
- Q3_K
- Q4_K
- Q5_K
- Q6_K
- IQ1_S
- IQ1_M
- IQ2_XXS
- IQ2_XS
- IQ2_S
- IQ3_XXS
- IQ3_S
- IQ4_XS
- IQ4_NL

> [!NOTE]
> لدعم إلغاء تكميم gguf، يلزم تثبيت `gguf>=0.10.0`.
### بنيات النماذج المدعومة

في الوقت الحالي، بنيات النماذج المدعومة هي البنيات التي كانت شائعة جدًا على Hub، وهي:

- LLaMa
- Mistral
- Qwen2
- Qwen2Moe
- Phi3
- Bloom
- Falcon
- StableLM
- GPT2
- Starcoder2
- T5

## مثال الاستخدام

لتحميل ملفات `gguf` في `transformers`، يجب تحديد معامل `gguf_file` فى دالة `from_pretrained` لكل من المُجزّئ اللغوية والنموذج. فيما يلي كيفية تحميل المُجزّئ اللغوي ونموذج، يمكن تحميلهما من نفس الملف:

```py
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"

tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
```

الآن لديك إمكانية الوصول إلى النسخة الكامل غير المكممة للنموذج في بيئة PyTorch، حيث يمكنك دمجه مع مجموعة كبيرة من الأدوات الأخرى.

لإعادة التحويل إلى ملف `gguf`، نوصي باستخدام ملف [`convert-hf-to-gguf.py`](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) من llama.cpp.

فيما يلي كيفية إكمال البرنامج النصي أعلاه لحفظ النموذج وإعادة تصديره مرة أخرى إلى `gguf`:

```py
tokenizer.save_pretrained('directory')
model.save_pretrained('directory')

!python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory}
```
160 changes: 160 additions & 0 deletions docs/source/ar/multilingual.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# النماذج متعددة اللغات للاستدلال

هناك العديد من النماذج متعددة اللغات في مكتبة 🤗 Transformers، وتختلف طريقة استخدامها للاستدلال عن النماذج أحادية اللغة. ولكن ليس كل استخدام النماذج متعددة اللغات مختلف. فبعض النماذج، مثل [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)، يمكن استخدامها تمامًا مثل النموذج أحادي اللغة. سيوضح لك هذا الدليل كيفية استخدام النماذج متعددة اللغات التي تختلف طريقة استخدامها للاستدلال.

## XLM

يحتوي XLM على عشر نسخ مختلفة، واحدة منها فقط أحادية اللغة. ويمكن تقسيم نسخ النماذج التسع المتبقية إلى فئتين: نسخ التي تستخدم تضمينات اللغة (language embeddings) وتلك التي لا تستخدمها.

### XLM مع تضمينات اللغة

تستخدم النماذج التالية من XLM تضمينات اللغة لتحديد اللغة المستخدمة أثناء الاستدلال:

- `FacebookAI/xlm-mlm-ende-1024` (نمذجة اللغة المقنعة، الإنجليزية-الألمانية)
- `FacebookAI/xlm-mlm-enfr-1024` (نمذجة اللغة المقنعة، الإنجليزية-الفرنسية)
- `FacebookAI/xlm-mlm-enro-1024` (نمذجة اللغة المقنعة، الإنجليزية-الرومانية)
- `FacebookAI/xlm-mlm-xnli15-1024` (نمذجة اللغة المقنعة، لغات XNLI)
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (نمذجة اللغة المقنعة + الترجمة، لغات XNLI)
- `FacebookAI/xlm-clm-enfr-1024` (نمذجة اللغة السببية، الإنجليزية-الفرنسية)
- `FacebookAI/xlm-clm-ende-1024` (نمذجة اللغة السببية، الإنجليزية-الألمانية)

تُمثل تضمينات اللغة على شكل مصفوفة بنفس شكل `input_ids` التي يتم تمريره إلى النموذج. وتعتمد القيم في هذه المصفوفات على اللغة المستخدمة ويتم تحديدها بواسطة معاملى المجزىء `lang2id` و `id2lang`.

في هذا المثال، قم بتحميل نسخة `FacebookAI/xlm-clm-enfr-1024` ( نمذجة اللغة السببية، الإنجليزية-الفرنسية):

```py
>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel

>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
```

تُظهر خاصية `lang2id` في المجزىء اللغات وأرقام تعريفها في هذا النموذج:

```py
>>> print(tokenizer.lang2id)
{'en': 0, 'fr': 1}
```

بعد ذلك، قم بإنشاء مثال على المدخلات:

```py
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
```

قم بتعيين معرف اللغة إلى `"en"` واستخدمه لتحديد تضمين اللغة. وتضمين اللغة عبارة عن مصفوفة مملوءة بـ `0` لأن هذا هو معرف اللغة الإنجليزية. يجب أن تكون هذه المصفوفة بنفس حجم `input_ids`.

```py
>>> language_id = tokenizer.lang2id["en"] # 0
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])

>>> # نقوم بإعادة تشكيلها لتكون بالحجم (batch_size، sequence_length)
>>> langs = langs.view(1, -1) # الآن بالحجم [1، sequence_length] (لدينا batch size تساوي 1)
```

الآن يمكنك تمرير `input_ids` وتضمين اللغة إلى النموذج:

```py
>>> outputs = model(input_ids, langs=langs)
```

يمكن لنص البرنامج النصي [run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) توليد النص باستخدام تضمينات اللغة مع نقاط تفتيش `xlm-clm`.

### XLM بدون تضمينات اللغة

النماذج التالية من XLM لا تتطلب تضمينات اللغة أثناء الاستنتاج:

- `FacebookAI/xlm-mlm-17-1280` (نمذجة اللغة المقنعة، 17 لغة)
- `FacebookAI/xlm-mlm-100-1280` (نمذجة اللغة المقنعة، 100 لغة)

تُستخدم هذه النماذج لتمثيل الجمل العامة، على عكس نسح XLM السابقة.

## BERT

يمكن استخدام النماذج التالية من BERT للمهام متعددة اللغات:

- `google-bert/bert-base-multilingual-uncased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 102 لغة)
- `google-bert/bert-base-multilingual-cased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 104 لغات)

لا تتطلب هذه النماذج تضمينات اللغة أثناء الاستدلال. يجب أن تُحدّد اللغة من السياق وتستنتج وفقاً لذلك.

## XLM-RoBERTa

يمكن استخدام النماذج التالية من XLM-RoBERTa للمهام متعددة اللغات:

- `FacebookAI/xlm-roberta-base` (نمذجة اللغة المقنعة، 100 لغة)
- `FacebookAI/xlm-roberta-large` (نمذجة اللغة المقنعة، 100 لغة)

تم تدريب XLM-RoBERTa على 2.5 تيرابايت من بيانات CommonCrawl الجديدة والمحسنة في 100 لغة. ويوفر مكاسب قوية على النماذج متعددة اللغات التي تم إصدارها سابقاً مثل mBERT أو XLM في مهام المصب مثل التصنيف، ووضع العلامات التسلسلية، والأسئلة والأجوبة.

## M2M100

يمكن استخدام النماذج التالية من M2M100 للترجمة متعددة اللغات:

- `facebook/m2m100_418M` (الترجمة)
- `facebook/m2m100_1.2B` (الترجمة)

في هذا المثال، قم بتحميل نسحة `facebook/m2m100_418M` لترجمة النص من الصينية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء اللغوى:

```py
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."

>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
```

تقسيم النّص إلى رموز:

```py
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
```

يجبر M2M100 معرف اللغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:

```py
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
```

## MBart

يمكن استخدام النماذج التالية من MBart للترجمة متعددة اللغات:

- `facebook/mbart-large-50-one-to-many-mmt` (الترجمة الآلية متعددة اللغات من واحد إلى كثير، 50 لغة)
- `facebook/mbart-large-50-many-to-many-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى كثير، 50 لغة)
- `facebook/mbart-large-50-many-to-one-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى واحد، 50 لغة)
- `facebook/mbart-large-50` (الترجمة متعددة اللغات، 50 لغة)
- `facebook/mbart-large-cc25`

في هذا المثال، قم بتحميل نسخة `facebook/mbart-large-50-many-to-many-mmt` لترجمة النص من الفنلندية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء:

```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
```

تقسيم النّص إلى رموز:

```py
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
```

يجبر MBart معرف لغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:

```py
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
```

إذا كنت تستخدم نسخة `facebook/mbart-large-50-many-to-one-mmt`، فلا تحتاج إلى إجبار معرف لغة الهدف كأول رمز مولد، وإلا فإن الاستخدام هو نفسه.
40 changes: 40 additions & 0 deletions docs/source/ar/tflite.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# التصدير إلى TFLite

[TensorFlow Lite](https://www.tensorflow.org/lite/guide) هو إطار عمل خفيف الوزن لنشر نماذج التعلم الآلي على الأجهزة المحدودة الموارد، مثل الهواتف المحمولة، والأنظمة المدمجة، وأجهزة إنترنت الأشياء (IoT). تم تصميم TFLite لتشغيل النماذج وتحسينها بكفاءة على هذه الأجهزة ذات الطاقة الحاسوبية والذاكرة واستهلاك الطاقة المحدودة.

يُمثَّل نموذج TensorFlow Lite بتنسيق محمول فعال خاص يُعرَّف بامتداد الملف `.tflite`.

🤗 Optimum يقدم وظيفة لتصدير نماذج 🤗 Transformers إلى TFLite من خلال الوحدة النمطية `exporters.tflite`. بالنسبة لقائمة هندسات النماذج المدعومة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/tflite/overview).

لتصدير نموذج إلى TFLite، قم بتثبيت متطلبات البرنامج المطلوبة:

```bash
pip install optimum[exporters-tf]
```

للاطلاع على جميع المغامﻻت المتاحة، راجع [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model)، أو عرض المساعدة في سطر الأوامر:

```bash
optimum-cli export tflite --help
```

لتصدير نسخة النموذج ل 🤗 Hub، على سبيل المثال، `google-bert/bert-base-uncased`، قم بتشغيل الأمر التالي:

```bash
optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/
```

ستظهر لك السجلات التي تُبيّن التقدم وموقع حفظ ملف `model.tflite` الناتج، كما في المثال التالي:

```bash
Validating TFLite model...
-[✓] TFLite model output names match reference model (logits)
- Validating TFLite Model output "logits":
-[✓] (1, 128, 30522) matches (1, 128, 30522)
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
- logits: max diff = 5.817413330078125e-05.
The exported model was saved at: bert_tflite
```

يُبيّن المثال أعلاه كيفية تصدير نسخة من النموذج ل 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج المجزء اللغوى في نفس المسار (`local_path`). عند استخدام CLI، قم بتمرير `local_path` إلى معامل `model` بدلاً من اسم النسخة على 🤗 Hub.

0 comments on commit b53e44e

Please sign in to comment.