Skip to content

Commit

Permalink
uniformize processor kwargs of siglip
Browse files Browse the repository at this point in the history
  • Loading branch information
leloykun committed Aug 16, 2024
1 parent f3c8b18 commit 072c965
Showing 1 changed file with 36 additions and 36 deletions.
72 changes: 36 additions & 36 deletions src/transformers/models/siglip/processing_siglip.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,30 @@
Image/Text processor class for SigLIP.
"""

import sys
from typing import List, Optional, Union

from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ...processing_utils import ProcessingKwargs, ProcessorMixin
from ...tokenization_utils_base import PreTokenizedInput, TextInput


if sys.version_info >= (3, 11):
from typing import Unpack
else:
from typing_extensions import Unpack


class SiglipProcessingKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"common_kwargs": {
"return_tensors": "pt",
},
}


class SiglipProcessor(ProcessorMixin):
Expand All @@ -48,12 +65,9 @@ def __init__(self, image_processor, tokenizer):

def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: int = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
images: Optional[ImageInput] = None,
**kwargs: Unpack[SiglipProcessingKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
Expand All @@ -63,33 +77,13 @@ def __call__(
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
Expand All @@ -104,21 +98,27 @@ def __call__(
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")

output_kwargs = self._merge_kwargs(
SiglipProcessingKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)

if text is not None:
encoding = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
encoding = self.tokenizer(text, output_kwargs["text_kwargs"])

if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors)
image_features = self.image_processor(images, output_kwargs["images_kwargs"])

if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
return BatchFeature(
data=dict(**image_features), tensor_type=output_kwargs["text_kwargs"]["return_tensors"]
)

def decode(self, *args, **kwargs):
"""
Expand Down

0 comments on commit 072c965

Please sign in to comment.