Constructor of TypeScript symbolic expressions.
<1kB | no deps | tree-shakeable | side-effect free
import { car, cdr, cons } from 'ts-expression';
import type { Cons } from 'ts-expression/cons';
type X = number;
type Y = number;
type Point = Cons<X, Y>;
const makePoint = (x: X, y: Y): Point => cons(x, y);
const getX = (point: Point) => car(point);
const getY = (point: Point) => cdr(point);
const getSymmetricalPoint = (point: Point) => {
const x = getX(point);
const y = getY(point);
return makePoint(-x, -y);
};
const calculateDistance = (point1: Point, point2: Point) => {
const [x1, y1] = [getX(point1), getY(point1)];
const [x2, y2] = [getX(point2), getY(point2)];
return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
};
//
const point1 = makePoint(3, 4);
const point2 = makePoint(0, 0);
getX(point1); // 3
getY(point2); // 0
getSymmetricalPoint(makePoint(1, 5)); // makePoint(-1, -5)
calculateDistance(makePoint(-2, -3), makePoint(-4, 4)); // ≈ 7.28
TS-Expression stands for TypeScript (TS) + symbolic expression (s-expression). It is a lightweight TypeScript library inspired by LISP's cons/car/cdr
operations for S-expressions. It brings functional programming concepts to TypeScript, enabling immutable data structures and encouraging robust, predictable code. This minimalist approach to handling complex data structures is particularly useful for algorithmic tasks and data manipulation, allowing developers to leverage powerful functional programming techniques in a familiar JavaScript/TypeScript environment.
Via npm
npm install ts-expression
Via yarn
yarn add ts-expression
Via pnpm
pnpm add ts-expression
Via bun
bun add ts-expression
Constructs a cons
symbolic expression from two values, car
and cdr
.
This function creates a symbolic expression that allows access to its car
(first/left element) and cdr
(second/right element)
using specific messages. The resulting s-expression is an immutable structure where car
and cdr
can be
accessed via the messages CAR
and CDR
, respectively.
car
CAR The first/left element of the s-expression.cdr
CDR The second/right element of the s-expression.
// Creating a symbolic expression with a number and a string
const sexp = cons(5, 'hello');
// Accessing the first element using `CAR`
const five = sexp(CAR); // 5
// Accessing the second element using `CDR`
const hello = sexp(CDR); // 'hello'
- Throws Error Throws an error if an unknown message is provided to the
cons
s-expression.
Returns Cons<CAR, CDR> A cons
s-expression, which is a function that returns the car
or cdr
based on the provided message.
Retrieves the first element of a cons
symbolic expression (known as car
).
This function returns the left
element of a symbolic expression created by the cons
function. It ensures that
the provided argument is a valid cons
symbolic expression before attempting to access the element.
cons
Cons<CAR, CDR> Thecons
symbolic expression from which to retrieve the first element.
// Example usage
const sexp = cons(5, 'hello');
// Retrieves the first element of the symbolic expression
const five = car(sexp); // 5
- Throws ReferenceError Throws an error if the provided argument is not a valid
cons
symbolic expression.
Returns CAR The first element (car
) of the cons
symbolic expression.
Retrieves the second element of a cons
symbolic expression (known as cdr
).
This function returns the right
element of a symbolic expression created by the cons
function. It ensures that
the provided argument is a valid cons
symbolic expression before attempting to access the element.
cons
Cons<CAR, CDR> Thecons
symbolic expression from which to retrieve the second element.
// Example usage
const sexp = cons(5, 'hello');
// Retrieves the second element of the symbolic expression
const hello = cdr(sexp); // 'hello'
- Throws ReferenceError Throws an error if the provided argument is not a valid
cons
symbolic expression.
Returns CDR The second element (cdr
) of the cons
symbolic expression.
Converts a cons
symbolic expression into its string representation, handling nested cons
s-expression recursively.
This function generates a string representation of a cons
s-expression by retrieving its car
and cdr
elements, converting them to strings using JSON.stringify
, and formatting them in a tuple-like format.
If either car
or cdr
is a nested cons
s-expression, the function will recursively convert those elements
to strings as well.
cons
Cons<CAR, CDR> Thecons
s-expression to be converted to a string.
// Example usage
const sexp = cons(cons(1, 2), cons('hello', 'world'));
// Convert the nested symbolic expression to a string
const str = toString(sexp); // "((1, 2), ("hello", "world"))"
- Throws ReferenceError Throws an error if the provided argument is not a valid
cons
s-expression.
Returns string A string representation of the cons
s-expression, including nested s-expressions, in the format (head, tail)
.
Checks if the provided argument is a cons
symbolic expression.
This function determines if the given value is a cons
s-expression by checking if it is a function and has
a specific init
property set to true
. This property is used as a marker to identify cons
s-expression,
which are functions with the init
property indicating their construction.
maybeCons
any The value to be checked. It can be of any type.
// Example of a valid cons
const sexp = cons(5, 'hello');
// Checking if it's a cons
const isValid = isCons(sexp); // true
// Example of an invalid cons
const notSexp = { car: 5, cdr: 'hello' };
// Checking if it's a cons
const isInvalid = isCons(notSexp); // false
Returns boolean true
if the argument is a cons
symbolic expression; otherwise, false
.
Asserts that the provided argument is a valid cons
s-expression and throws a ReferenceError
if it is not.
This function checks whether the given argument is a valid cons
s-expression using the isCons
function.
If the argument is not a valid s-expression, an error is thrown with a detailed message that includes
the serialized form of the invalid argument.
maybeCons
any The value to be checked, which can be of any type.
// Example of a valid cons
const sexp = cons(5, 'hello');
// Asserting the cons, no error is thrown
assertCons(sexp);
// Example of an invalid cons
const notSexp = { car: 5, cdr: 'hello' };
// Asserting the non-s-expression, an error is thrown
assertCons(notSexp); // Throws ReferenceError: Argument must be a symbolic expression, but it was '{"car":5,"cdr":"hello"}'
- Throws ReferenceError Throws an error if the provided argument is not a valid
cons
s-expression.
Returns void
Rational numbers as pairs of values: numerator and denominator.
import type { Cons } from 'ts-expression/cons';
import { car, cdr, cons } from 'ts-expression';
import { toString } from 'ts-expression/operators';
type Numerator = number;
type Denominator = number;
type Fraction = Cons<Numerator, Denominator>;
const make = (numer: Numerator, denom: Denominator) => cons(numer, denom);
const numer = (rat: Fraction): Numerator => car(rat);
const denom = (rat: Fraction): Denominator => cdr(rat);
const isEqual = (rat1: Fraction, rat2: Fraction): boolean =>
numer(rat1) * denom(rat2) === denom(rat1) * numer(rat2);
const add = (rat1: Fraction, rat2: Fraction): Fraction => {
const [a, b] = [numer(rat1), denom(rat1)];
const [c, d] = [numer(rat2), denom(rat2)];
return make(a * d + b * c, b * d); // (a * d + b * c) / (b * d)
};
const sub = (rat1: Fraction, rat2: Fraction): Fraction => {
const [a, b] = [numer(rat1), denom(rat1)];
const [c, d] = [numer(rat2), denom(rat2)];
return make(a * d - b * c, b * d); // (a * d - b * c) / (b * d)
};
const mul = (rat1: Fraction, rat2: Fraction): Fraction => {
const [a, b] = [numer(rat1), denom(rat1)];
const [c, d] = [numer(rat2), denom(rat2)];
return make(a * c, b * d); // (a * c) / (b * d)
};
const div = (rat1: Fraction, rat2: Fraction): Fraction => {
const [a, b] = [numer(rat1), denom(rat1)];
const [c, d] = [numer(rat2), denom(rat2)];
return make(a * d, b * c); // (a * d) / (b * c)
};
//
const rat1 = make(2, 3);
const rat2 = make(4, 6);
const rat3 = make(7, 2);
toString(rat2); // '(4, 6)'
isEqual(rat1, rat2); // true
add(rat1, rat3); // 25/6
sub(rat3, rat1); // 17/6
mul(rat1, rat3); // 14/6
div(rat1, rat3); // 4/21
I’ve embraced the "Structure and Interpretation of Computer Programs" (SICP) and LISP's abstractions to deeply understand and appreciate functional programming and data manipulation. These foundational concepts highlight the power of simple, immutable data structures in building complex systems, emphasizing clarity and expressive power in code.