Skip to content

Commit

Permalink
Merge pull request #348 from hitonanode/monge-shortest-path
Browse files Browse the repository at this point in the history
Monge shortest path
  • Loading branch information
hitonanode authored Oct 6, 2024
2 parents 6e200e5 + 2003db0 commit c7dd77b
Show file tree
Hide file tree
Showing 4 changed files with 181 additions and 0 deletions.
84 changes: 84 additions & 0 deletions other_algorithms/monge_shortest_path.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
#pragma once
#include <cassert>
#include <vector>

// Shortest path of Monge-weighted graph
// Variant of LARSCH Algorithm: https://noshi91.hatenablog.com/entry/2023/02/18/005856
// Complexity: O(n log n)
//
// Given a directed graph with n vertices and weighted edges
// (w(i, j) = cost_callback(i, j) (i < j)),
// this class calculates the shortest path from vertex 0 to all other vertices.
template <class Cost> struct monge_shortest_path {
std::vector<Cost> dist; // dist[i] = shortest distance from 0 to i
std::vector<int> amin; // amin[i] = previous vertex of i in the shortest path

template <class F> void _check(int i, int k, F cost_callback) {
if (i <= k) return;
if (Cost c = dist[k] + cost_callback(k, i); c < dist[i]) dist[i] = c, amin[i] = k;
}

template <class F> void _rec_solve(int l, int r, F cost_callback) {
if (r - l == 1) return;

const int m = (l + r) / 2;
for (int k = amin[l]; k <= amin[r]; ++k) _check(m, k, cost_callback);

_rec_solve(l, m, cost_callback);
for (int k = l + 1; k <= m; ++k) _check(r, k, cost_callback);
_rec_solve(m, r, cost_callback);
}

template <class F> Cost solve(int n, F cost_callback) {
assert(n > 0);
dist.resize(n);
amin.assign(n, 0);

dist[0] = Cost();
for (int i = 1; i < n; ++i) dist[i] = cost_callback(0, i);

_rec_solve(0, n - 1, cost_callback);

return dist.back();
}

template <class F> int num_edges() const {
int ret = 0;
for (int c = (int)amin.size() - 1; c >= 0; c = amin[c]) ++ret;
return ret;
}
};

// Find shortest path length from 0 to n - 1 with k edges, min_edges <= k <= max_edges
// https://noshi91.hatenablog.com/entry/2022/01/13/001217
template <class Cost, class F>
Cost monge_shortest_path_with_specified_edges(int n, int min_edges, int max_edges,
Cost max_abs_cost, F cost_callback) {

assert(1 <= n);
assert(0 <= min_edges);
assert(min_edges <= max_edges);
assert(max_edges <= n - 1);

monge_shortest_path<Cost> msp;

auto eval = [&](Cost p) -> Cost {
msp.solve(n, [&](int i, int j) { return cost_callback(i, j) - p; });
return -msp.dist.back() - p * (p < 0 ? max_edges : min_edges);
};

Cost lo = -max_abs_cost * 3, hi = max_abs_cost * 3;

while (lo + 1 < hi) {
Cost p = (lo + hi) / 2, f = eval(p), df = eval(p + 1) - f;
if (df == Cost()) {
return -f;
} else {
(df < Cost() ? lo : hi) = p;
}
}

Cost flo = eval(lo), fhi = eval(hi);

return flo < fhi ? -flo : -fhi;
}
47 changes: 47 additions & 0 deletions other_algorithms/monge_shortest_path.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
---
title: Shortest path of DAG with Monge weights
documentation_of: ./monge_shortest_path.hpp
---

$n$ 頂点の DAG で辺重みが Monge となるようなものに対して最短路長を高速に求める. [1] で紹介されている簡易版 LARSCH Algorithm が実装されていて,計算量は $O(n \log n)$ .

また,辺数が `min_edges` 以上 `max_edges` 以下であるようなものに限った最短路長を高速に求めることも可能(計算量にさらに重み二分探索の $\log$ がつく).

## 使用方法

### 最短路長の計算

```cpp
auto f = [&](int s, int t) -> Cost {
//
};

monge_shortest_path<Cost> msp;
Cost ret = msp.solve(n, f);
```

### 辺の本数の下限・上限を指定した最短路長の計算

```cpp
auto f = [&](int s, int t) -> Cost {
//
};

int n; // 頂点数
int l, r; // 辺の本数が [l, r] の範囲に収まる最短路を見つけたい
Cost max_weight; // f() が返す値の絶対値の上界

Cost ret = monge_shortest_path_with_specified_edges(n, l, r, max_weight, f);
```

## 問題例

- [No.705 ゴミ拾い Hard - yukicoder](https://yukicoder.me/problems/no/705)
- [AtCoder Beginner Contest 218 H - Red and Blue Lamps](https://atcoder.jp/contests/abc218/tasks/abc218_h)
- [東京海上日動プログラミングコンテスト2024(AtCoder Beginner Contest 355) G - Baseball](https://atcoder.jp/contests/abc355/tasks/abc355_g)
- [東北大学プログラミングコンテスト 2022 K - Lebesgue Integral](https://atcoder.jp/contests/tupc2022/tasks/tupc2022_k)

## Links

- [1] [簡易版 LARSCH Algorithm - noshi91のメモ](https://noshi91.hatenablog.com/entry/2023/02/18/005856)
- [2] [Aliens DP における二分探索の色々 - noshi91のメモ](https://noshi91.hatenablog.com/entry/2023/11/20/052227#fn-c9578a2a)
22 changes: 22 additions & 0 deletions other_algorithms/test/concave_max_plus_convolution.test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
#define PROBLEM "https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary"

#include "../smawk.hpp"

#include <iostream>
#include <vector>
using namespace std;

int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);

int N, M;
cin >> N >> M;
vector<int> A(N), B(M);
for (auto &a : A) cin >> a, a = -a;
for (auto &b : B) cin >> b, b = -b;

auto ret = concave_max_plus_convolution<int, ((1 << 30) - 1) * 2>(B, A);

for (int i = 0; i < N + M - 1; ++i) cout << -ret[i] << " \n"[i + 1 == N + M - 1];
}
28 changes: 28 additions & 0 deletions other_algorithms/test/monge_shortest_path.yuki705.test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#define PROBLEM "https://yukicoder.me/problems/no/705"
#include "../monge_shortest_path.hpp"

#include <cassert>
#include <cmath>
#include <iostream>
using namespace std;

int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);

int N;
cin >> N;
vector<int> A(N), X(N), Y(N);
for (auto &a : A) cin >> a;
for (auto &x : X) cin >> x;
for (auto &y : Y) cin >> y;

auto weight = [&](int j, int i) {
assert(j < i);
--i;
const long long dx = abs(A.at(i) - X.at(j)), dy = Y.at(j);
return dx * dx * dx + dy * dy * dy;
};

monge_shortest_path<long long> msp;
cout << msp.solve(N + 1, weight) << '\n';
}

0 comments on commit c7dd77b

Please sign in to comment.