-
Notifications
You must be signed in to change notification settings - Fork 0
코드 분석
Heeseon Cheon edited this page Oct 11, 2020
·
2 revisions
https://www.notion.so/code-7f2c7ae86b8649ef8812686c8b6e5e61
- utils.py
- get_weight_threshold(model, rate, args)
- weight_prune(model, threshold, args)
- get_filter_mask(model, rate, args)
- filter_prune(model, filter_mask)
- cal_sparsity(model)
- __init__.py
- mnn.py
- Masker(torch.autograd.Function)
- forward(ctx, x, mask)
- backward(ctx, grad)
- MaskConv2d(nn.Conv2d)
- init(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
- forward(self, input)
- Masker(torch.autograd.Function)
- __init__.py
- resnet_mask.py
- BasicBlock(nn.Module)
- __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None)
- forward(self, x)
- Bottleneck(nn.Module)
- __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None)
- forward(self, x)
- BasicBlock(nn.Module)
- ResNet(nn.Module)
- __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None)
- _make_layer(self, block, planes, blocks, stride=1, dilate=False)
- _forward_impl(self, x)
- forward(self, x) : _forward_impl(x) 실행
- ResNet_CIFAR(nn.Module)
- __init__(self, block, layers, num_classes=10, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None)
- _make_layer(self, block, planes, blocks, stride=1, dilate=False)
- _forward_impl(self, x)
- forward(self, x) : _forward_impl(x) 실행
- conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1)
- conv1x1(in_planes, out_planes, stride=1)
- resnet(data='cifar10', **kwargs) : data 따라 모델 다르게 설정해서 모델 반환