Skip to content

hankyul2/ViewBatchModel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Do Your Best and Get Enough Rest for Continual Learning

This folder contains official pyTorch implementations for "Do Your Best and Get Enough Rest for Continual Learning" accepted in CVPR'25. (see our paper, slides, poster).


Illustration of View-Batch Model

1. Tutorial

  1. Clone this repository and install the requirements.

    git clone https://github.com/hankyul2/ViewBatchModel.git
    cd ViewBatchModel
    pip install -r requirements.txt
  2. Train ResNet18 on S-CIFAR-10 using iCaRL as baseline methods with 200 buffers.

    iCaRL

    CUDA_VISIBLE_DEVICES=0 python utils/main.py --model icarl --load_best_args --dataset seq-cifar10 --buffer_size 200 --seed 1993 --savecheck 1 --ckpt_name icarl_r1_s1993

    Ours-iCaRL

    CUDA_VISIBLE_DEVICES=4 python utils/main.py --model icarl --load_best_args --dataset seq-cifar10 --buffer_size 200 --aug-repeat 4 --prog-aug 5 --seed 1993 --flag hard_aug --savecheck 1 --ckpt_name icarl_r4_hard_aug_s1993
  3. Validate the trained network using the saved checkpoint.

    iCaRL

    CUDA_VISIBLE_DEVICES=0 python utils/main.py --model icarl --load_best_args --dataset seq-cifar10 --buffer_size 200 --seed 1993 --loadcheck checkpoints/icarl_r1_s1993_cifar10_t0.pth --start_from 0 --stop_after 0 --inference_only 1

    Ours-iCaRL

    CUDA_VISIBLE_DEVICES=4 python utils/main.py --model icarl --load_best_args --dataset seq-cifar10 --buffer_size 200 --seed 1997 --loadcheck checkpoints/icarl_r4_hard_aug_s1997_cifar10_t0.pth --start_from 0 --stop_after 0 --inference_only 1
  4. See scripts/icarl for more commands to reproduce Table 6 in the paper. Also, check datasets/utils/continual_dataset.py#L24 for view-batch replay and models/icarl.py#L78 for view-batch SSL.

2. Reproduced Results

After the paper has been accepted, we rerun everything to provide complete logs and checkpoints for our Table 6 in the paper. Our exact environments are:

  • torch==1.12.1+cu113
  • torchvision==0.13.1+cu113
  • timm==1.0.7
  • numpy==1.24.4

Experimental Results

The table below reproduces Table 6 of our paper, which contains the main ablation study for the proposed method.

Method View-batch Replay Strong Augment View-batch SSL Forgetting(⬇️) CIL(⬆️) TIL(⬆️) AVG
iCaRL 28.05±4.21 63.58±2.64 90.32±3.19 76.95 -
iCaRL 22.16±0.91 65.33±1.05 89.33±0.58 77.33 +0.38
iCaRL 18.72±1.76 67.21±0.42 91.63±0.98 79.42 +2.47
iCaRL 18.29±0.91 67.16±0.75 91.02±0.97 79.09 +2.14
iCaRL 13.81±1.58 69.25±0.41 92.73±0.57 80.99 +4.04

Log

Below, the WanDB project link provides the complete logs that are made during the training of the above tables. It includes:

  • command line
  • metrics
  • console outputs
  • environments

WanDB Project Link: https://wandb.ai/gregor99/view_batch_model.

Checkpoint

The tables below provide the checkpoints saved at the end of tasks during the training of the above tables.

seed=1993
method View-batch Replay Strong Augmentation View-batch SSL task 1 task 2 task 3 task 4 task 5
iCaRL - - - ckpt ckpt ckpt ckpt ckpt
iCaRL - v - ckpt ckpt ckpt ckpt ckpt
iCaRL v - - ckpt ckpt ckpt ckpt ckpt
iCaRL v v - ckpt ckpt ckpt ckpt ckpt
iCaRL v v v ckpt ckpt ckpt ckpt ckpt
seed=1996
method View-batch Replay Strong Augmentation View-batch SSL task 1 task 2 task 3 task 4 task 5
iCaRL - - - ckpt ckpt ckpt ckpt ckpt
iCaRL - v - ckpt ckpt ckpt ckpt ckpt
iCaRL v - - ckpt ckpt ckpt ckpt ckpt
iCaRL v v - ckpt ckpt ckpt ckpt ckpt
iCaRL v v v ckpt ckpt ckpt ckpt ckpt
seed=1997
method View-batch Replay Strong Augmentation View-batch SSL task 1 task 2 task 3 task 4 task 5
iCaRL - - - ckpt ckpt ckpt ckpt ckpt
iCaRL - v - ckpt ckpt ckpt ckpt ckpt
iCaRL v - - ckpt ckpt ckpt ckpt ckpt
iCaRL v v - ckpt ckpt ckpt ckpt ckpt
iCaRL v v v ckpt ckpt ckpt ckpt ckpt

3. Acknowledgement

This project is heavily based on Mammoth. We sincerely appreciate the authors of the mentioned works for sharing such great library as open-source project.

About

[CVPR'25] Do Your Best and Get Enough Rest for Continual Learning

Resources

Stars

Watchers

Forks

Packages

No packages published