A modern, state-based WhatsApp bot library with OpenAI GPT integration, built on top of GREEN-API by @green-api/whatsapp-chatgpt.
- OpenAI GPT model integration for intelligent responses
- Support for multiple GPT models (GPT-3.5, GPT-4, GPT-4o)
- Multimodal capabilities with image processing support
- Voice message transcription
- Comprehensive message handling for various WhatsApp media types
- Middleware architecture for customizing message and response processing
- Built-in conversation history management
- State-based conversation flow inherited from base library
- TypeScript support
npm install @green-api/whatsapp-chatgpt
The dependencies (openai
and @green-api/whatsapp-chatbot-js-v2
) will be installed automatically.
import { WhatsappGptBot } from '@green-api/whatsapp-chatgpt';
// Initialize the bot
const bot = new WhatsappGptBot({
idInstance: "your-instance-id",
apiTokenInstance: "your-token",
openaiApiKey: "your-openai-api-key",
model: "gpt-4o",
systemMessage: "You are a helpful assistant."
});
// Start the bot
bot.start();
Complete configuration options for the WhatsappGptBot:
interface GPTBotConfig extends BotConfig {
/** OpenAI API key */
openaiApiKey: string;
/** Model to use for chat completion (default: gpt-4o) */
model?: OpenAIModel;
/** Maximum number of messages to keep in conversation history (default: 10) */
maxHistoryLength?: number;
/** System message to set assistant behavior */
systemMessage?: string;
/** Temperature for response generation (default: 0.5) */
temperature?: number;
/** Default reply when an error occurs */
errorMessage?: string;
// All configuration options from the base WhatsAppBot are also available
// See @green-api/whatsapp-chatbot-js-v2 for additional options
}
Main class for creating and managing your OpenAI-powered WhatsApp bot:
const bot = new WhatsappGptBot({
// Required parameters
idInstance: "your-instance-id",
apiTokenInstance: "your-token",
openaiApiKey: "your-openai-api-key",
// Optional GPT-specific parameters
model: "gpt-4o",
maxHistoryLength: 15,
systemMessage: "You are a helpful assistant specializing in customer support.",
temperature: 0.7,
errorMessage: "Sorry, I couldn't process your request. Please try again.",
// Optional parameters from base bot
defaultState: "greeting",
sessionTimeout: 300,
// See base library documentation for more options
});
The bot automatically handles different types of WhatsApp messages and converts them into a format understood by OpenAI's models.
- Text: Regular text messages
- Image: Photos with optional captions (supported in vision-capable models)
- Audio: Voice messages with automatic transcription
- Video: Video messages with captions
- Document: File attachments
- Poll: Poll messages and poll updates
- Location: Location sharing
- Contact: Contact sharing
The bot uses a registry of message handlers to process different message types:
// Access the registry
const registry = bot.messageHandlers;
// Create a custom message handler
class CustomMessageHandler implements MessageHandler {
canHandle(message: Message): boolean {
return message.type === "custom-type";
}
async processMessage(message: Message): Promise<any> {
// Process the message
return "Processed content";
}
}
// Register the custom handler
bot.registerMessageHandler(new CustomMessageHandler());
// Replace an existing handler
bot.replaceHandler(TextMessageHandler, new CustomTextHandler());
The middleware system allows for customizing message processing before sending to GPT and response processing before sending back to the user.
// Process messages before sending to GPT
bot.addMessageMiddleware(async (message, messageContent, messages, sessionData) => {
// Add custom context to the conversation
if (message.type === "text" && message.chatId.endsWith("@c.us")) {
// Add user information from a database
const userInfo = await getUserInfo(message.chatId);
// Modify the current message content
const enhancedContent = `[User: ${userInfo.name}] ${messageContent}`;
return {
messageContent: enhancedContent,
messages
};
}
return {
messageContent,
messages
};
});
// Process GPT responses before sending to user
bot.addResponseMiddleware(async (response, messages, sessionData) => {
// Format or modify the response
const formattedResponse = response
.replace(/\bGPT\b/g, "Assistant")
.trim();
// You can also modify the messages that will be saved in history
return {
response: formattedResponse,
messages
};
});
The GPT bot extends the base session data with conversation-specific information:
interface GPTSessionData {
/** Conversation history */
messages: ChatCompletionMessageParam[];
/** Timestamp of last activity */
lastActivity: number;
/** Custom user state data */
userData?: Record<string, any>;
/** Context for the current conversation */
context?: {
/** Tags or metadata for the conversation */
tags?: string[];
/** Custom context variables */
variables?: Record<string, any>;
};
}
You can access and modify this data in your middleware:
bot.addMessageMiddleware(async (message, content, messages, sessionData) => {
// Set context variables
if (!sessionData.context) {
sessionData.context = {variables: {}};
}
sessionData.context.variables.lastInteraction = new Date().toISOString();
return {messageContent: content, messages};
});
The library provides several utility functions for common tasks:
import { Utils } from '@green-api/whatsapp-chatgpt';
// Download media from a URL
const tempFile = await Utils.downloadMedia("https://example.com/image.jpg");
// Transcribe audio
const openai = new OpenAI({apiKey: "your-openai-api-key"});
const transcript = await Utils.transcribeAudio("/path/to/audio.ogg", openai);
// Clean up after processing
fs.unlinkSync(tempFile);
import { Utils } from 'whatsapp-gpt-bot';
// Trim conversation history
const trimmedMessages = Utils.trimConversationHistory(
messages,
10, // max messages
true // preserve system message
);
// Estimate token usage
const estimatedTokens = Utils.estimateTokens(messages);
The library supports a variety of OpenAI models:
- gpt-4
- gpt-4-turbo
- gpt-4-turbo-preview
- gpt-4-1106-preview
- gpt-4-0125-preview
- gpt-4-32k
- gpt-4o (default)
- gpt-4o-mini
- gpt-4o-2024-05-13
- gpt-3.5-turbo
- gpt-3.5-turbo-16k
- gpt-3.5-turbo-1106
- gpt-3.5-turbo-0125
- o1
- o1-mini
- o1-preview
The following models can process images:
- gpt-4o
- gpt-4o-mini
- gpt-4-vision-preview
- gpt-4-turbo
- gpt-4-turbo-preview
Since the library is built on @green-api/whatsapp-chatbot-js-v2, you can use all the state features of the base library:
// Add custom state
bot.addState({
name: "collect_info",
async onEnter(message) {
await bot.sendText(message.chatId, "Please provide your name.");
},
async onMessage(message, data = {}) {
// Store the name and process with GPT
const openai = bot.getOpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [
{role: "system", content: "Generate a personalized greeting."},
{role: "user", content: `My name is ${message.text}`}
]
});
await bot.sendText(message.chatId, completion.choices[0]?.message.content || "Hello!");
return "main_chat"; // Transition to main chat state
}
});
// Get OpenAI client for custom API calls
const openai = bot.getOpenAI();
// Check if current model supports images
if (bot.supportsImages()) {
// Handle image-based workflow
}
See our demo chatbot for a comprehensive demo chatbot, which showcases many features:
import {
GPTSessionData,
ImageMessageHandler,
ProcessMessageMiddleware,
ProcessResponseMiddleware,
WhatsappGptBot,
OpenAIModel,
} from "@green-api/whatsapp-chatgpt";
import * as dotenv from "dotenv";
import { Message } from "@green-api/whatsapp-chatbot-js-v2";
import { ChatCompletionMessageParam } from "openai/resources/chat/completions";
import OpenAI from "openai";
dotenv.config();
// Custom image handler that provides enhanced descriptions
class EnhancedImageHandler extends ImageMessageHandler {
async processMessage(message: Message, openai: OpenAI, model: OpenAIModel): Promise<any> {
const result = await super.processMessage(message, openai, model);
if (typeof result === "string") {
return result.replace(
"[The user sent an image",
"[The user sent an image. Tell them that you are not the model they should be using"
);
}
return result;
}
}
// Middleware examples
// Logging middleware
const loggingMessageMiddleware: ProcessMessageMiddleware = async (
message, messageContent, messages, _
) => {
console.log(`[${new Date().toISOString()}] User (${message.chatId}): `,
typeof messageContent === "string"
? messageContent
: JSON.stringify(messageContent));
return {messageContent, messages};
};
// Initialize the bot
const bot = new WhatsappGptBot({
idInstance: process.env.INSTANCE_ID || "",
apiTokenInstance: process.env.INSTANCE_TOKEN || "",
openaiApiKey: process.env.OPENAI_API_KEY || "",
model: "gpt-4o",
systemMessage: "You are a helpful WhatsApp assistant created by GREEN-API",
maxHistoryLength: 15,
temperature: 0.5,
handlersFirst: true,
clearWebhookQueueOnStart: true,
});
// Command handlers
bot.onText("/help", async (message, _) => {
const helpText = `*WhatsAppGPT Demo Bot*\n\nAvailable commands:\n- /help - Show this help message\n- /clear - Clear conversation history`;
await bot.sendText(message.chatId, helpText);
});
// Register middleware
bot.addMessageMiddleware(loggingMessageMiddleware);
// Replace default handlers
bot.replaceHandler(ImageMessageHandler, new EnhancedImageHandler());
// Start the bot
bot.start();
This demo bot includes:
- Custom message handlers
- Various middleware implementations
- Command handlers
- Custom type handlers
- Error handling
import { WhatsappGptBot } from '@green-api/whatsapp-chatgpt';
import { detectLanguage } from './language-detector';
const bot = new WhatsappGptBot({
idInstance: "your-instance-id",
apiTokenInstance: "your-token",
openaiApiKey: "your-openai-api-key",
model: "gpt-4o"
});
// Add language detection middleware
bot.addMessageMiddleware(async (message, content, messages, sessionData) => {
// Only process text messages
if (message.type !== 'text' || !message.text) {
return {messageContent: content, messages};
}
// Detect language
const language = await detectLanguage(message.text);
// Store language in session
if (!sessionData.context) {
sessionData.context = {variables: {}};
}
sessionData.context.variables.language = language;
// Update system message with language instruction
const languageInstruction = `User is writing in ${language}. Reply in the same language.`;
// Find system message
const systemIndex = messages.findIndex(m => m.role === 'system');
if (systemIndex >= 0) {
// Update existing system message
const updatedMessages = [...messages];
const currentContent = updatedMessages[systemIndex].content;
if (typeof currentContent === 'string' && !currentContent.includes('User is writing in')) {
updatedMessages[systemIndex].content = `${currentContent} ${languageInstruction}`;
}
return {messageContent: content, messages: updatedMessages};
} else {
// Add new system message
return {
messageContent: content,
messages: [
{role: 'system', content: languageInstruction},
...messages
]
};
}
});
// Start the bot
bot.start();
MIT