Skip to content
forked from Koed00/django-q

A multiprocessing distributed task queue for Django

License

Notifications You must be signed in to change notification settings

goseak/django-q

This branch is 1 commit ahead of Koed00/django-q:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b8bab5a · May 14, 2024
May 24, 2021
May 14, 2024
Jun 20, 2021
May 23, 2021
Mar 26, 2021
Jun 20, 2021
May 23, 2021
Feb 26, 2021
May 14, 2021
Jun 26, 2021
Jun 10, 2021
Jun 24, 2015
Jun 26, 2021
Jan 27, 2019

Repository files navigation

Q logo

A multiprocessing distributed task queue for Django

image0 image1 Documentation Status image2

Features

  • Multiprocessing worker pool
  • Asynchronous tasks
  • Scheduled, cron and repeated tasks
  • Signed and compressed packages
  • Failure and success database or cache
  • Result hooks, groups and chains
  • Django Admin integration
  • PaaS compatible with multiple instances
  • Multi cluster monitor
  • Redis, Disque, IronMQ, SQS, MongoDB or ORM
  • Rollbar and Sentry support

Requirements

Tested with: Python 3.7, 3.8, 3.9 Django 2.2.X and 3.2.X

Warning

Since Python 3.7 async became a reserved keyword and was refactored to async_task

Brokers

Installation

  • Install the latest version with pip:

    $ pip install django-q
    
  • Add django_q to your INSTALLED_APPS in your projects settings.py:

    INSTALLED_APPS = (
        # other apps
        'django_q',
    )
    
  • Run Django migrations to create the database tables:

    $ python manage.py migrate
    
  • Choose a message broker , configure and install the appropriate client library.

Read the full documentation at https://django-q.readthedocs.org

Configuration

All configuration settings are optional. e.g:

# settings.py example
Q_CLUSTER = {
    'name': 'myproject',
    'workers': 8,
    'recycle': 500,
    'timeout': 60,
    'compress': True,
    'cpu_affinity': 1,
    'save_limit': 250,
    'queue_limit': 500,
    'label': 'Django Q',
    'redis': {
        'host': '127.0.0.1',
        'port': 6379,
        'db': 0, }
}

For full configuration options, see the configuration documentation.

Management Commands

Start a cluster with:

$ python manage.py qcluster

Monitor your clusters with:

$ python manage.py qmonitor

Monitor your clusters' memory usage with:

$ python manage.py qmemory

Check overall statistics with:

$ python manage.py qinfo

Creating Tasks

Use async_task from your code to quickly offload tasks:

from django_q.tasks import async_task, result

# create the task
async_task('math.copysign', 2, -2)

# or with a reference
import math.copysign

task_id = async_task(copysign, 2, -2)

# get the result
task_result = result(task_id)

# result returns None if the task has not been executed yet
# you can wait for it
task_result = result(task_id, 200)

# but in most cases you will want to use a hook:

async_task('math.modf', 2.5, hook='hooks.print_result')

# hooks.py
def print_result(task):
    print(task.result)

For more info see Tasks

Schedule

Schedules are regular Django models. You can manage them through the Admin page or directly from your code:

# Use the schedule function
from django_q.tasks import schedule

schedule('math.copysign',
         2, -2,
         hook='hooks.print_result',
         schedule_type=Schedule.DAILY)

# Or create the object directly
from django_q.models import Schedule

Schedule.objects.create(func='math.copysign',
                        hook='hooks.print_result',
                        args='2,-2',
                        schedule_type=Schedule.DAILY
                        )

# Run a task every 5 minutes, starting at 6 today
# for 2 hours
import arrow

schedule('math.hypot',
         3, 4,
         schedule_type=Schedule.MINUTES,
         minutes=5,
         repeats=24,
         next_run=arrow.utcnow().replace(hour=18, minute=0))

# Use a cron expression
schedule('math.hypot',
         3, 4,
         schedule_type=Schedule.CRON,
         cron = '0 22 * * 1-5')

For more info check the Schedules documentation.

Testing

To run the tests you will need the following in addition to install requirements:

Or you can use the included Docker Compose file.

The following commands can be used to run the tests:

# Create virtual environment
python -m venv venv

# Install requirements
venv/bin/pip install -r requirements.txt

# Install test dependencies
venv/bin/pip install pytest pytest-django

# Install django-q
venv/bin/python setup.py develop

# Run required services (you need to have docker-compose installed)
docker-compose -f test-services-docker-compose.yaml up -d

# Run tests
venv/bin/pytest

# Stop the services required by tests (when you no longer plan to run tests)
docker-compose -f test-services-docker-compose.yaml down

Locale

Currently available in English, German and French. Translation pull requests are always welcome.

Todo

  • Better tests and coverage
  • Less dependencies?

Acknowledgements

About

A multiprocessing distributed task queue for Django

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%