Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 78 additions & 62 deletions uncertainty_baselines/models/wide_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,14 +49,8 @@ def Conv2D(filters, seed=None, **kwargs): # pylint: disable=invalid-name
return tf.keras.layers.Conv2D(filters, **default_kwargs)


def basic_block(
inputs: tf.Tensor,
filters: int,
strides: int,
conv_l2: float,
bn_l2: float,
seed: int,
version: int) -> tf.Tensor:
def basic_block(inputs: tf.Tensor, filters: int, strides: int, conv_l2: float,
bn_l2: float, seed: int, version: int) -> tf.Tensor:
"""Basic residual block of two 3x3 convs.

Args:
Expand All @@ -75,30 +69,42 @@ def basic_block(
x = inputs
y = inputs
if version == 2:
y = BatchNormalization(beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(y)
y = BatchNormalization(
beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(
y)
y = tf.keras.layers.Activation('relu')(y)
seeds = tf.random.experimental.stateless_split([seed, seed + 1], 3)[:, 0]
y = Conv2D(filters,
strides=strides,
seed=seeds[0],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(y)
y = BatchNormalization(beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(y)
y = Conv2D(
filters,
strides=strides,
seed=seeds[0],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(
y)
y = BatchNormalization(
beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(
y)
y = tf.keras.layers.Activation('relu')(y)
y = Conv2D(filters,
strides=1,
seed=seeds[1],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(y)
y = Conv2D(
filters,
strides=1,
seed=seeds[1],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(
y)
if version == 1:
y = BatchNormalization(beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(y)
y = BatchNormalization(
beta_regularizer=tf.keras.regularizers.l2(bn_l2),
gamma_regularizer=tf.keras.regularizers.l2(bn_l2))(
y)
if not x.shape.is_compatible_with(y.shape):
x = Conv2D(filters,
kernel_size=1,
strides=strides,
seed=seeds[2],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(x)
x = Conv2D(
filters,
kernel_size=1,
strides=strides,
seed=seeds[2],
kernel_regularizer=tf.keras.regularizers.l2(conv_l2))(
x)
x = tf.keras.layers.add([x, y])
if version == 1:
x = tf.keras.layers.Activation('relu')(x)
Expand All @@ -107,8 +113,8 @@ def basic_block(

def group(inputs, filters, strides, num_blocks, conv_l2, bn_l2, version, seed):
"""Group of residual blocks."""
seeds = tf.random.experimental.stateless_split(
[seed, seed + 1], num_blocks)[:, 0]
seeds = tf.random.experimental.stateless_split([seed, seed + 1],
num_blocks)[:, 0]
x = basic_block(
inputs,
filters=filters,
Expand Down Expand Up @@ -187,49 +193,59 @@ def wide_resnet(
raise ValueError('depth should be 6n+4 (e.g., 16, 22, 28, 40).')
num_blocks = (depth - 4) // 6
inputs = tf.keras.layers.Input(shape=input_shape)
x = Conv2D(16,
strides=1,
seed=seeds[0],
kernel_regularizer=l2_reg(hps['input_conv_l2']))(inputs)
x = Conv2D(
16,
strides=1,
seed=seeds[0],
kernel_regularizer=l2_reg(hps['input_conv_l2']))(
inputs)
if version == 1:
x = BatchNormalization(beta_regularizer=l2_reg(hps['bn_l2']),
gamma_regularizer=l2_reg(hps['bn_l2']))(x)
x = BatchNormalization(
beta_regularizer=l2_reg(hps['bn_l2']),
gamma_regularizer=l2_reg(hps['bn_l2']))(
x)
x = tf.keras.layers.Activation('relu')(x)
x = group(x,
filters=16 * width_multiplier,
strides=1,
num_blocks=num_blocks,
conv_l2=hps['group_1_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[1])
x = group(x,
filters=32 * width_multiplier,
strides=2,
num_blocks=num_blocks,
conv_l2=hps['group_2_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[2])
x = group(x,
filters=64 * width_multiplier,
strides=2,
num_blocks=num_blocks,
conv_l2=hps['group_3_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[3])
x = group(
x,
filters=16 * width_multiplier,
strides=1,
num_blocks=num_blocks,
conv_l2=hps['group_1_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[1])
x = group(
x,
filters=32 * width_multiplier,
strides=2,
num_blocks=num_blocks,
conv_l2=hps['group_2_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[2])
x = group(
x,
filters=64 * width_multiplier,
strides=2,
num_blocks=num_blocks,
conv_l2=hps['group_3_conv_l2'],
bn_l2=hps['bn_l2'],
version=version,
seed=seeds[3])
if version == 2:
x = BatchNormalization(beta_regularizer=l2_reg(hps['bn_l2']),
gamma_regularizer=l2_reg(hps['bn_l2']))(x)
x = BatchNormalization(
beta_regularizer=l2_reg(hps['bn_l2']),
gamma_regularizer=l2_reg(hps['bn_l2']))(
x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.AveragePooling2D(pool_size=8)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(
num_classes,
kernel_initializer=tf.keras.initializers.HeNormal(seed=seeds[4]),
kernel_regularizer=l2_reg(hps['dense_kernel_l2']),
bias_regularizer=l2_reg(hps['dense_bias_l2']))(x)
bias_regularizer=l2_reg(hps['dense_bias_l2']))(
x)
return tf.keras.Model(
inputs=inputs,
outputs=x,
Expand Down