-
Notifications
You must be signed in to change notification settings - Fork 80
adding dither function #33
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: default
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,377 @@ | ||
## Copyright (C) 2025 Leonardo Araujo <[email protected]> | ||
## | ||
## This program is free software: you can redistribute it and/or modify | ||
## it under the terms of the GNU General Public License as published by | ||
## the Free Software Foundation, either version 3 of the License, or | ||
## (at your option) any later version. | ||
## | ||
## This program is distributed in the hope that it will be useful, | ||
## but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
## GNU General Public License for more details. | ||
## | ||
## You should have received a copy of the GNU General Public License | ||
## along with this program; see the file COPYING. If not, see | ||
## <https://www.gnu.org/licenses/>. | ||
|
||
## -*- texinfo -*- | ||
## @deftypefn {Function File} {@var{X} = } dither (@var{RGB}, @var{map}) | ||
## @deftypefnx {Function File} {@var{X} = } dither (@var{RGB}, @var{map}, @var{Qm}, @var{Qe}) | ||
## @deftypefnx {Function File} {@var{BW} = } dither (@var{I}) | ||
## | ||
## @code{@var{X} = dither (@var{RGB},@var{map})} creates an indexed image | ||
## approximation, using the color provided in the colormap, and uses dithering | ||
## to increase apparent color resolution. Floyd-Steinberg error filter is used: | ||
Comment on lines
+22
to
+24
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This sentence is pretty long. Consider splitting it into two sentences. |
||
## [ x 7] | ||
## [3 5 1] / 16 | ||
## It used a raster scan and no weight renormalization at boundaries. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Typo? "used" -> "uses" |
||
## The default values are used: @var{Qm}=5, and @var{Qe}=8. | ||
## | ||
## Inputs: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We usually don't use "section headings" like this. Also note, that texinfo will convert this and the following four lines into one single long line. |
||
## @var{RGB} is a m x n x 3 array with values in [0, 1] (double) or [0, 255] (uint8). | ||
## @var{map} is c x 3 matrix holding RGB triplets in [0, 1] (double). | ||
## @var{Qm} is the number of quantization bits per axis for inverse colormap (default: 5). | ||
## @var{Qe} is the number of quantization bits for error diffusion (default: 8, max 16). | ||
## | ||
## Output: | ||
## @var{X} is a m x n indexed image (uint8 if c<=256, else uint16) for the | ||
## colormap @var{map} provided. | ||
## | ||
## Example: | ||
## @example | ||
## X = dither (RGB, map); | ||
## @end example | ||
## | ||
## @code{@var{X} = dither (@var{RGB}, @var{map}, @var{Qm}, @var{Qe})} | ||
## | ||
## @var{Qm} is the number of quantization bits along each color axis for the | ||
## inverse colormap. @var{Qm} determines the resolution of this grid along each | ||
## color axis (R, G, B). @var{Qm} defines the precision of the color space | ||
## discretization used to map input RGB values to those colors available in the | ||
## colormap. @var{Qe} is the number of quantization bits for the color space | ||
## error calculations in the Floyd-Steinberg error diffusion algorithm. | ||
## It controls the precision of the error values that are calculated and | ||
## propagated during dithering. If @var{Qe} < @var{Qm}, the error diffusion | ||
## process may lose precision, therefore dithering cannot be performed, and the | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Full-stop after "precision". |
||
## function returns an undithered indexed image. | ||
## | ||
## @code{@var{BW} = dither (@var{I})} converts the grayscale input image @var{I} | ||
## into binary applying dithering in the process. The output image @var{BW} | ||
## is a black and white image where dithering creates the illusion of shades of | ||
## gray. | ||
## | ||
## Ref [1] Floyd, R. W., and Steinberg, L., An Adaptive Algorithm for Spatial | ||
## Gray Scale, International Symposium Digest of Technical Papers, Society for | ||
## Information Displays, 1975, p. 36. | ||
## Ref [2] Ulichney. R., Digital Halftoning, The MIT Press, 1987. | ||
## | ||
## @seealso{rgb2ind, imapprox} | ||
## @end deftypefn | ||
|
||
function X = dither (RGB, map, Qm = 5, Qe = 8) | ||
if (nargin < 1 || nargin > 4 || nargin == 3) | ||
print_usage; | ||
endif | ||
if ndims (RGB) == 2 | ||
RGB = cat (3, RGB, RGB, RGB); % Duplicate grayscale to RGB | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For end-of line comments, use two spaces and a single |
||
if nargin < 2, | ||
map = [0 0 0; 1 1 1]; % binary (black and white) colormap | ||
Qm = 1; | ||
endif | ||
endif | ||
if ndims (RGB) != 3 || size (RGB, 3) != 3 | ||
error('dither: RGB must be an m x n x 3 array.'); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Use a whitespace between function name and opening parenthesis. |
||
end | ||
if !ismatrix (map) || size (map, 2) != 3 || min (map(:)) < 0 || max (map(:)) > 1 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Use a space after the negation operator (i.e., |
||
error('dither: Colormap must be a c x 3 matrix.'); | ||
endif | ||
if nargin > 2, | ||
if Qm < 1 || Qe < 1 || fix (Qm) != Qm || fix (Qe) != Qe | ||
error ('Qm and Qe must be a positive integers.'); | ||
elseif Qe < Qm | ||
warning ('dither: Qe < Qm, returning undithered image.'); | ||
X = zeros (size (RGB, 1), size (RGB, 2), 'uint16'); | ||
for i = 1:size (RGB, 1) | ||
for j = 1:size (RGB, 2) | ||
X(i, j) = rgb2indLUT (RGB(i, j, :), map, Qm); | ||
endfor | ||
endfor | ||
if size (map, 1) <= 256 | ||
X = uint8 (X); | ||
endif | ||
return; | ||
endif | ||
endif | ||
Qe = min (Qe, 16); % Cap Qe to avoid excessive precision | ||
|
||
% Scale RGB and map to [0, 1] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Use |
||
if isa (RGB, 'uint8') | ||
RGB = double (RGB) / 255; | ||
elseif max (RGB(:)) > 1 | ||
RGB = double (RGB) / 255; | ||
end | ||
RGB = max (0, min (1, RGB)); | ||
if max (map(:)) > 1 | ||
map = double (map) / 255; | ||
end | ||
map = max (0, min (1, map)); | ||
|
||
% Initialize output | ||
[h, w, _] = size (RGB); | ||
X = zeros (h, w, 'uint16'); % Indices (1-based) | ||
|
||
% Floyd-Steinberg weights (raster scan, no renormalization) | ||
FSweights = [0 0 7; 3 5 1] / 16; % Sum = 1 | ||
|
||
% neighbor offsets and weights | ||
offsets = [0 1; 1 -1; 1 0; 1 1]; | ||
weights = [FSweights(1, 3), FSweights(2, 1), FSweights(2, 2), FSweights(2, 3)]; | ||
|
||
% Quantization levels for error (Qe) | ||
n_levels = 2^Qe; | ||
error_scale = n_levels - 1; | ||
|
||
% Process pixels in raster order | ||
for i = 1:h | ||
for j = 1:w | ||
% Get current pixel (with accumulated errors) | ||
pixel = RGB(i, j, :); | ||
pixel = reshape (max (0, min (1, pixel)), 1, 3); % Clamp to [0, 1] | ||
|
||
% Quantize to nearest colormap color | ||
id = rgb2indLUT (pixel, map, Qm); | ||
X(i, j) = id; | ||
|
||
% Compute quantization error | ||
chosen_color = map(id+1, :); | ||
error = pixel - chosen_color; % 1x3 | ||
error = round (error * error_scale) / error_scale; % Quantize to Qe bits | ||
|
||
% Diffuse error to neighboring pixels (no renormalization) | ||
for k = 1:length (weights) | ||
ni = i + offsets(k, 1); | ||
nj = j + offsets(k, 2); | ||
if ni <= h && nj >= 1 && nj <= w | ||
% Extract current pixel value as 1x3 | ||
current = reshape (RGB(ni, nj, :), 1, 3); | ||
% Apply weighted error to each channel | ||
new_value = current + error * weights(k); | ||
RGB(ni, nj, :) = reshape (new_value, 1, 3); | ||
endif | ||
endfor | ||
endfor | ||
endfor | ||
|
||
% Convert output to uint8 if colormap size allows | ||
if size (map, 1) <= 256 | ||
X = uint8 (X); | ||
endif | ||
endfunction | ||
|
||
function id = rgb2indLUT (pixel, map, Qm = 5) | ||
% RGB2INDLUT Map an RGB pixel to the nearest colormap index using a lookup table. | ||
% id = RGB2INDLUT (pixel, map) returns the 1-based index of the closest color | ||
% in the colormap 'map' for the input RGB pixel (1x3 vector), using a quantized | ||
% inverse colormap with 2^5 bins per RGB axis. | ||
% id = RGB2INDLUT (pixel, map, Qm) uses Qm bits for quantization per RGB axis. | ||
% | ||
% Inputs: | ||
% pixel: 1x3 vector [R, G, B], values in [0, 1] (double) or [0, 255] (uint8). | ||
% map: c-by-3 matrix, each row an RGB triplet in [0, 1] (double). | ||
% Qm: Number of quantization bits per axis (default: 5). | ||
% | ||
% Output: | ||
% id: Index (1-based) into the colormap 'map' for the closest color. | ||
% | ||
% Notes: | ||
% - Uses a persistent lookup table (LUT) for speed. | ||
% - LUT is recomputed if map or Qm changes. | ||
% - Warns if Qm is too large (>8) due to memory constraints. | ||
% - Assumes input pixel and map are properly scaled (pixel auto-scaled if needed). | ||
|
||
% Validate inputs | ||
if nargin < 2 | ||
error ('rgb2indLUT: Not enough input arguments. Pixel and colormap required.'); | ||
endif | ||
if length (pixel) != 3 | ||
error ('rgb2indLUT: Pixel must be a 1x3 RGB vector.'); | ||
if !isvector (pixel) | ||
[s, i] = sort (size (pixel),'descend'); | ||
pixel = permute (pixel, i); | ||
endif | ||
endif | ||
if !ismatrix (map) || size (map, 2) != 3 | ||
error ('rgb2indLUT: Colormap must be a c-by-3 matrix.'); | ||
endif | ||
if nargin < 3 | ||
Qm = 5; % Default quantization bits | ||
end | ||
if !isscalar (Qm) || Qm < 1 || floor (Qm) != Qm | ||
error ('rgb2indLUT: Qm must be a positive integer.'); | ||
end | ||
if Qm > 8 | ||
warning ('rgb2indLUT: Qm > 8 may use excessive memory (%d^3 bins).', 2^Qm); | ||
endif | ||
|
||
% Scale pixel to [0, 1] | ||
if isa (pixel, 'uint8') | ||
pixel = double (pixel) / 255; % Convert to [0, 1] | ||
elseif max (pixel(:)) > 1 | ||
pixel = double (pixel) / 255; % Assume [0, 255] if values exceed 1 | ||
endif | ||
pixel = max (0, min (1, pixel)); % Clamp to [0, 1] | ||
|
||
% Ensure map is in [0, 1] | ||
if max (map(:)) > 1 | ||
map = double(map) / 255; | ||
endif | ||
map = max (0, min (1, map)); | ||
|
||
% Persistent variables for LUT | ||
persistent lut last_map last_Qm; | ||
|
||
% Check if we need to recompute the LUT | ||
recompute = isempty (lut) || Qm != last_Qm || !isequal (map, last_map); | ||
|
||
% Number of bins per axis | ||
n_bins = 2^Qm; | ||
|
||
% Scale pixel to [0, n_bins-1] for indexing | ||
bin_idx = round (pixel * (n_bins - 1)) + 1; | ||
|
||
if recompute | ||
% Initialize LUT: n_bins x n_bins x n_bins array of colormap indices | ||
lut = zeros (n_bins, n_bins, n_bins, 'uint16'); | ||
|
||
% Compute bin centers for distance calculations | ||
bin_centers = (0:(n_bins-1))' / (n_bins-1); % [0, 1] range, column vector | ||
[R, G, B] = ndims_grid(n_bins, n_bins, n_bins); % Meshgrid for bin indices | ||
bin_rgb = [bin_centers(R(:)), bin_centers(G(:)), bin_centers(B(:))]; % n_bins^3 x 3 | ||
|
||
% Compute Euclidean distances from each bin to each colormap color | ||
c = size (map, 1); % Number of colors | ||
distances = zeros (n_bins^3, c); | ||
for i = 1:c | ||
diff = bin_rgb - map(i, :); % n_bins^3 x 3 | ||
distances(:, i) = sqrt (sum (diff.^2, 2)); % n_bins^3 x 1 | ||
endfor | ||
|
||
% Find the nearest colormap index (1-based) for each bin | ||
[_, indices] = min (distances, [], 2); | ||
lut(:) = indices; % Assign to LUT | ||
|
||
% Update cached parameters | ||
last_map = map; | ||
last_Qm = Qm; | ||
endif | ||
|
||
% Look up the colormap index | ||
id = lut(bin_idx(1), bin_idx(2), bin_idx(3)) - 1; | ||
endfunction | ||
|
||
function [X, Y, Z] = ndims_grid (nx, ny, nz) | ||
% NDIMS_GRID Create 3D grid indices (emulates meshgrid for 3D). | ||
[x, y, z] = ind2sub ([nx, ny, nz], 1:(nx*ny*nz)); | ||
X = reshape (x, nx, ny, nz); | ||
Y = reshape (y, nx, ny, nz); | ||
Z = reshape (z, nx, ny, nz); | ||
endfunction | ||
|
||
%!demo | ||
%! ## Solid gray | ||
%! | ||
%! I = ones (256)/2; | ||
%! X = dither (I); | ||
%! figure; | ||
%! subplot (121); imshow (I); title ('original'); | ||
%! subplot (122); imshow (double(X)); title ('dithered'); | ||
|
||
%!demo | ||
%! ## Four solid gray levels | ||
%! | ||
%! I = [ones(256,64)/4, ones(256,64)/2, ones(256,64)*3/4, ones(256,64)*7/8]; | ||
%! X = dither (I); | ||
%! figure; | ||
%! subplot (121); imshow (I); title ('original'); | ||
%! subplot (122); imshow (double(X)); title ('dithered'); | ||
|
||
%!demo | ||
%! ## Black-White Gradient | ||
%! | ||
%! I = repmat ([0:255]./255,256,1); | ||
%! X = dither (I); | ||
%! figure; | ||
%! subplot (121); imshow (I); title ('original'); | ||
%! subplot (122); imshow (double(X)); title ('dithered'); | ||
|
||
%!demo | ||
%! ## Color Gradient | ||
%! | ||
%! width = 256; height = 256; | ||
%! upperleft = [1, 0, 0]; % Red | ||
%! upperright = [0, 1, 0]; % Green | ||
%! lowerleft = [0, 0, 1]; % Blue | ||
%! lowerright = [0, 0, 0]; % Black | ||
%! | ||
%! % Create a grid for interpolation | ||
%! [x, y] = meshgrid(linspace(0, 1, width), linspace(0, 1, height)); | ||
%! % Initialize the 3D array for the image | ||
%! image = zeros(height, width, 3); | ||
%! % Calculate the interpolated colors for each point | ||
%! % The logic is a bilinear interpolation of the four corner colors | ||
%! % The first dimension of the `image` matrix is the height (y-axis) and the second is the width (x-axis) | ||
%! image(:, :, 1) = (1 - x) .* (1 - y) * lowerleft(1) + x .* (1 - y) * lowerright(1) + (1 - x) .* y * upperleft(1) + x .* y * upperright(1); | ||
%! image(:, :, 2) = (1 - x) .* (1 - y) * lowerleft(2) + x .* (1 - y) * lowerright(2) + (1 - x) .* y * upperleft(2) + x .* y * upperright(2); | ||
%! image(:, :, 3) = (1 - x) .* (1 - y) * lowerleft(3) + x .* (1 - y) * lowerright(3) + (1 - x) .* y * upperleft(3) + x .* y * upperright(3); | ||
%! | ||
%! % Use the corner colors to define the colormap | ||
%! map = [upperleft; upperright; lowerleft; lowerright]; | ||
%! % Apply dither | ||
%! X = dither (image, map); | ||
%! | ||
%! % Display the results | ||
%! figure; | ||
%! subplot (121); imshow (image); title ('original'); | ||
%! subplot (122); imshow (reshape(map(X(:)+1,:), [size(X) 3])); title ('dithered'); | ||
|
||
%!demo | ||
%! # Lenna | ||
%! url = 'https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'; | ||
%! rgb_image = imread(url); | ||
%! map = [226 143 122; 199 127 124; 175 71 82; 230 191 168; 210 100 98; 132 50 81; 94 24 65; 149 97 139] / 255; | ||
%! X = dither (rgb_image, map); | ||
%! I = reshape(map(X(:)+1,:), [size(X) 3]); | ||
%! figure; | ||
%! subplot (121); imshow (rgb_image); title ('original'); | ||
%! subplot (122); imshow (I); title ('dithered'); | ||
|
||
## Test input validation | ||
%!error dither () | ||
%!error dither (permute (1:3,[1 3 2])) | ||
%!error dither (1, 1) | ||
%!error dither (1, 1:3) | ||
%!error dither (1, [0 0 0]') | ||
%!error dither (1, [0 0 0], 0) | ||
%!error dither (1, [0 0 0], 0, 0) | ||
%!error dither (1, [0 0 0], -1, 1) | ||
%!error dither (1, [0 0 0], 1, -1) | ||
|
||
%!test | ||
%! X = dither (0, [0 0 0; 1 1 1], 1, 1); | ||
%! assert (X, uint8(0)) | ||
|
||
%!test | ||
%! X = dither (1, [0 0 0; 1 1 1], 1, 1); | ||
%! assert (X, uint8(1)) | ||
|
||
%!test | ||
%! X = dither (repmat(ones(3)/2,1,1,3), [0 0 0; 1 1 1], 4, 4); | ||
%! assert (X, uint8([1 0 1; 0 1 0; 1 0 1])) | ||
|
||
%!test | ||
%! X = dither (repmat(ones(3)/4,1,1,3), [0 0 0; 1 1 1], 4, 4); | ||
%! assert (X, uint8([0 0 0; 0 1 0; 0 0 0])) | ||
|
||
%!test | ||
%! X = dither (repmat(ones(3)*3/4,1,1,3), [0 0 0; 1 1 1], 4, 4); | ||
%! assert (X, uint8([1 1 1; 1 0 1; 1 1 1])) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please add a one-line description of the function if possible.