Skip to content

git-cloner/mujoco_playground_sample

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mujoco Playground实践

实践Mujoco Playground。包括安装以及对dm_control_suite、locomotion的测试。

一、环境要求

GPU:至少24G显存,因为训练时需要18G左右显存。如RTX4090、RTX3090等

操作系统:Linux,如Ubuntu22.04

基础软件:NVIDIA显卡驱动、CUDA12.4、Anaconda(Python虚拟环境)

二、环境安装

1、安装ffmpeg

# 更新系统
sudo apt update
# 安装ffmpeg
sudo apt install -y ffmpeg

2、创建虚拟环境

# 建立虚拟环境
conda create -n mujoco python==3.12 -y
# 激活虚拟环境
conda activate mujoco

3、安装依赖库

# clone源码
git clone https://github.com/git-cloner/mujoco_playground_sample
# 切换目录
cd mujoco_playground_sample
# 安装依赖库
pip install -r requirements.txt \
-i https://mirrors.aliyun.com/pypi/simple

4、安装JAX GPU版

# 安装jax for CUDA
pip install "jax[cuda12]" -f \
https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# 验证jax for CUDA安装
python -c "import jax; print(jax.default_backend())" 

三、运行测试程序

# 测试dm_control_suite
CUDA_VISIBLE_DEVICES=0 python dm_control_suite.py
# 测试运动
CUDA_VISIBLE_DEVICES=0 python locomotion.py

四、参考

# 官网例子
git clone https://github.com/google-deepmind/mujoco_playground
cd mujoco_playground/learning/notebooks
# jupyter 转 python
jupyter nbconvert --to python dm_control_suite.ipynb
# 其他参考文件
https://research.mels.ai/ide?mels=UnitreeGo1.qkazy

About

mujoco playground sample

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages