Skip to content

ghostjat/darknet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

php-darknet

[Minimum PHP version: 7.4.0] Packagist Build Status Code Intelligence Status

Darknet Logo

php-ffi experiment

php interface to the lib-darknet for object detection. Php7.4+ is required

Install

composer require ghostjat/darknet

Description

lib-darknet

Darknet

Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.

  • It offers a simple API.
  • High performance, due to the fact that it uses native interface elements.
  • Fast learning by the user, due to the simplicity of its API.

yolo v2, v3, v4

If running on cpu you may use FASTEST cfg & weight for real time object detection on MS COCO dataset.

require '../vendor/autoload.php';

use darknet\core;
$dn = new core(core::YOLOFASTEST);

System-Conf:- CPU:- Intel(R) Core(TM) i3-2370M CPU @ 2.40GHz 64bit MEM:- 8GB Dataset:- MS-COCO Classes:- 80

YOLO Time (ms) CPU Mem(mb)(max)
Tiny-v2 0.85933095 (max) 78 143.59
0.62237596 (min)
Tiny-v3 0.93895602 (max) 90 125.9
0.60306811 (min)
Main-v3 15.4672219 (max) 98 964.5
14.0677847 (min)
Tiny-v4 0.85933095 (max) 82 151.9
0.62237596 (min)
FASTEST 0.20039399 (max) 20 97.47
0.11836814 (min)
FASTEST-xl 0.80017591 (max) 69 131.85
0.22637511 (min)

Synopsis

WARNING:
This module is in its early stages and should be considered a Work in Progress. The interface is not final and may change in the future.

Sample:

demo gp dog egale giraffe person

Sample code:

require '../vendor/autoload.php';

use darknet\core;
$lib = '/home/ghost/bin/c-lib/darknet/data/';
$img = ['eagle.jpg','giraffe.jpg','horses.jpg','person.jpg','kite.jpg'];
$dn = new core();
foreach ($img as $value) {
    $dn->detect($lib.$value);
}

Author

Shubham Chaudhary [email protected]