-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsensor_controller.py
319 lines (255 loc) · 11.7 KB
/
sensor_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import serial # conda install -c conda-forge pyserial
from cobs import cobs # pip install cobs
import crc8
import struct
import time
from multiprocessing import Process, Queue
from queue import Empty
from scipy.spatial.transform import Rotation as R
import numpy as np
from serial.tools import list_ports
from numpy_ringbuffer import RingArrayBuffer,filterBuffer
def quaternion_to_rotation_matrix(q):
"""Converts a quaternion to a rotation matrix.
Args:
q: A numpy array representing a quaternion in the format [x, y, z, w].
Returns:
A 3x3 numpy array representing the rotation matrix.
"""
x, y, z, w = q
R = np.array([
[1 - 2*y**2 - 2*z**2, 2*x*y - 2*z*w, 2*x*z + 2*y*w],
[2*x*y + 2*z*w, 1 - 2*x**2 - 2*z**2, 2*y*z - 2*x*w],
[2*x*z - 2*y*w, 2*y*z + 2*x*w, 1 - 2*x**2 - 2*y**2]
])
return R
class SerialDataCollector:
# Bit masks for fresh data
FRESH_LOAD_CELL_0 = 0x0001
FRESH_LOAD_CELL_1 = 0x0002
FRESH_LOAD_CELL_2 = 0x0004
FRESH_LOAD_CELL_3 = 0x0008
FRESH_LOAD_CELL_ALL = 0x000F
FRESH_FILTER_STATUS = 0x0010
FRESH_LINEAR_ACCEL = 0x0020
FRESH_QUATERNION = 0x0040
FRESH_ROTATION_MATRIX = 0x0080
FRESH_GRAVITY_VECTOR = 0x0100
FRESH_GYRO = 0x0200
FRESH_ACCEL = 0x0400
def __init__(self, baudrate, queue, max_queue_size=1):
self.ser = None
self.baudrate = baudrate
# Hexadecimal VendorID=0x16c0 & ProductID=0x483
self.vendor_id = 0x16c0
self.product_id = 0x483
self.sample_timestamps = RingArrayBuffer(buffer_len=100, shape=1,dtype=np.float64) # List to store sample timestamps
self.sample_timestamps.storage[:] = time.time()
self.unpacked = None
self.running = False
self.queue = queue
self.max_queue_size = max_queue_size
self.filter_for_ang_vel = filterBuffer(shape=3,fs=500, filter_order=4,cut_off_frequency=20,dtype=np.float64)
self.filter_for_lin_acc = filterBuffer(shape=3,fs=500, filter_order=4,cut_off_frequency=20,dtype=np.float64)
self.filter_force_measurement = filterBuffer(shape=4,fs=200, filter_order=4,cut_off_frequency=20,dtype=np.float64)
# self.filter_force_measurement.buf_filt.storage[:]=2000
# self.filter_force_measurement.buf_raw.storage[:]=2000
# Initialize data variables
self.ang_vel = np.zeros(3,dtype=np.float64)
self.lin_acc = np.zeros(3,dtype=np.float64)
self.lin_acc_raw = np.zeros(3,dtype=np.float64)
self.ang_vel_raw = np.zeros(3,dtype=np.float64)
self.gravity_vec = np.zeros(3,dtype=np.float64)
self.base_quat = np.array([0, 0, 0, 1],dtype=np.float64)
self.rotationMatrix = np.zeros(9,dtype=np.float64)
self.ang_vel_raw = np.zeros(3,dtype=np.float64)
self.lin_acc_imu_filtered = np.zeros(3,dtype=np.float64)
self.ang_vel_imu_filtered = np.zeros(3,dtype=np.float64)
self.force_measurement_raw = np.zeros(4,dtype=np.int32)
self.force_measurement = np.zeros(4,dtype=np.int32) # filtered
self.force_measurement_min = np.ones(4,dtype=np.int32)*5000
# NOTE: MUST match the actual values of the force sensor at zero contact
self.force_measurement_min = np.array([730,1020,1000,780])
# self.force_measurement_raw_buf = RingArrayBuffer(buffer_len=20,shape=(4,),dtype=int)
self.force_measurement_threshold = 400
self.contact = np.zeros(2,dtype=bool)
self.last_contact = np.zeros_like(self.contact)
self.contact_filt = np.zeros_like(self.contact)
self.filterStatus = 0
self.filterDynamicsMode = 0
self.filterStatusFlags = 0
self.fresh = 0
def find_port(self):
ports = list_ports.comports()
for port in ports:
if port.vid == self.vendor_id and port.pid == self.product_id:
return port.device
raise serial.SerialException("Teensy not connected!")
def connect(self):
self.ser = None
port = self.find_port()
if port:
try:
self.ser = serial.Serial(port, self.baudrate, timeout=1)
self.ser.set_low_latency_mode(True)
print(f"Connected to {port}")
except serial.SerialException as e:
print(f"Failed to connect to {port}: {e}")
else:
print("No suitable port found!")
def start(self):
self.running = True
self.process = Process(target=self.read_loop)
self.process.start()
def stop(self):
self.running = False
self.process.join()
def read_loop(self):
while self.running:
self.read()
def read(self):
# # see if there is a connection and retry to connect if not
if not self.ser:
self.connect()
if not self.ser:
self.queue.put(None)
return
received_data = bytearray()
while True:
try:
byte = self.ser.read(1) # Read a single byte
except serial.SerialException as e:
self.connect()
self.queue.put(None)
return
if byte == b'\x00': # Check if it's the null byte
break
received_data += byte
try:
decoded = cobs.decode(received_data)
except cobs.DecodeError:
print("bad COBS")
# self.queue.put(None)
# print("CRC mismatch")
return
try:
# self.unpacked = struct.unpack("@hhhhffffffffffffffffffffffffffffhhhh", decoded[1:-1])
self.unpacked = struct.unpack("@hhhhfffffffffffffffffffhhhh", decoded[1:-1]) # no rotation matrix
self.sample_timestamps.add(time.time()) # Add timestamp for the new sample
# x is forward, y is left, z is up
# in the imu coordinate x is forward, y is right, z is down
# so have to negate y and z
# Update data variables
self.fresh = self.unpacked[26] # [35]
# force_measurement_fresh = bool(self.fresh & self.FRESH_LOAD_CELL_ALL)
# if force_measurement_fresh:
self.force_measurement_raw[:] = self.unpacked[0:4] # 0 is left-back, 1 left-front, 2 right-back, 3 right-front
self.force_measurement[:] = self.filter_force_measurement.add(self.force_measurement_raw)
self.contact[0] = (self.force_measurement[0] + self.force_measurement[1]-self.force_measurement_min[0]-self.force_measurement_min[1])>self.force_measurement_threshold
self.contact[1] = (self.force_measurement[2] + self.force_measurement[3]-self.force_measurement_min[2]-self.force_measurement_min[3])>self.force_measurement_threshold
self.lin_acc_raw[:] = self.unpacked[4:7]
self.ang_vel_raw[:] = self.unpacked[7:10]
self.gravity_vec[:] = self.unpacked[10:13]
# self.rotationMatrix[:] = self.unpacked[13:22]
# 4
self.base_quat[:] = self.unpacked[13:17] # [22:26]
self.lin_acc_imu_filtered[:] = self.unpacked[17:20] # [26:29]
self.ang_vel_imu_filtered[:] = self.unpacked[20:23] #[29:32]
self.filterStatus = self.unpacked[23] #[32]
self.filterDynamicsMode = self.unpacked[24] #[33]
self.filterStatusFlags = self.unpacked[25] #[34]
self.sps = 100/(self.sample_timestamps[0][0] - self.sample_timestamps[-1][0]) # sample per second
# # filtered data
self.ang_vel[:] = self.filter_for_ang_vel.add(self.ang_vel_imu_filtered)
self.lin_acc[:] = self.filter_for_lin_acc.add(self.lin_acc_imu_filtered)
# self.rot_from_quat = quaternion_to_rotation_matrix(self.base_quat)
# Send data to the main process
latest_data = self.get_latest_data()
if self.queue.qsize() >= self.max_queue_size:
try:
self.queue.get_nowait() # Remove oldest item
except Empty:
pass
self.queue.put(latest_data)
except struct.error as e:
print("Struct unpacking error:", e)
def get_latest_data(self):
return {
'force_measurement': self.force_measurement_raw,
'self.force_measurement_min': self.force_measurement_min,
'lin_acc': self.lin_acc,
'contact': self.contact,
# 'lin_acc_raw': self.lin_acc_raw,
# 'lin_acc_filtered': self.lin_acc_imu_filtered,
'ang_vel': self.ang_vel,
# 'ang_vel_raw': self.ang_vel_raw, #self.gyroData_filtered, # self.gyroData,
# 'ang_vel_filtered': self.ang_vel_imu_filtered,
'base_quat': self.base_quat,
# 'rot': self.rotationMatrix,
# 'rot_form_quat': self.rot_from_quat.ravel(),
# 'rot_debug': self.rotationMatrix.ravel()/self.rot_from_quat.ravel(),
# 'rotationMatrix': self.rotationMatrix,
'gravity_vec': self.gravity_vec,
'sps': self.sps
}
def interpret_fresh_bytes(self):
fresh_dict = {
'forceSensorData_0': bool(self.fresh & self.FRESH_LOAD_CELL_0),
'forceSensorData_1': bool(self.fresh & self.FRESH_LOAD_CELL_1),
'forceSensorData_2': bool(self.fresh & self.FRESH_LOAD_CELL_2),
'forceSensorData_3': bool(self.fresh & self.FRESH_LOAD_CELL_3),
'filterStatus': bool(self.fresh & self.FRESH_FILTER_STATUS),
'linearAccel': bool(self.fresh & self.FRESH_LINEAR_ACCEL),
'quaternionData': bool(self.fresh & self.FRESH_QUATERNION),
# 'rotationMatrix': bool(self.fresh & self.FRESH_ROTATION_MATRIX),
'gravityVector': bool(self.fresh & self.FRESH_GRAVITY_VECTOR),
'gyroData': bool(self.fresh & self.FRESH_GYRO),
'accelData': bool(self.fresh & self.FRESH_ACCEL),
}
return fresh_dict
class SensorController:
def __init__(self, baudrate=1500000):
self.queue = Queue(maxsize=1)
self.data_collector = SerialDataCollector(baudrate, self.queue)
def start(self):
self.data_collector.start()
def stop(self):
self.data_collector.stop()
def get_samples_per_second(self):
return self.data_collector.get_samples_per_second()
def get_latest_data(self):
try:
return self.queue.get(timeout=0.1)
except Empty:
print("No data received!")
return None
if __name__ == "__main__":
from publisher import DataPublisher
publisher = DataPublisher('udp://localhost:9870',encoding="msgpack",broadcast=False)
# Initialize the SensorController instance
sensors = SensorController()
# Start the collection process
sensors.start()
target_fps = 500
frame_time = 1 / target_fps
try:
while True:
start_time = time.time()
latest_data = sensors.get_latest_data()
if latest_data:
# print(f"{latest_data['sps']:.2f}")
# print(latest_data['sps'])
# print(latest_data['gyroData'])
print(latest_data['contact'],latest_data['force_measurement'])
publisher.publish({"sensors":latest_data})
pass
else:
print("sensorController: No data received!")
elapsed_time = time.time() - start_time
sleep_time = frame_time - elapsed_time
if sleep_time > 0:
time.sleep(sleep_time)
except KeyboardInterrupt:
# Stop the data collection gracefully on interrupt
sensors.stop()
print("Data collection stopped.")