forked from vicky002/AlgoWiki
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
49 additions
and
262 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -28,296 +28,83 @@ <h1>AlgoWiki - Best Sources at one Place!</h1> | |
</ul> | ||
</header> | ||
<section> | ||
<h3> | ||
<a id="index" class="anchor" href="#index" aria-hidden="true"><span class="octicon octicon-link"></span></a>Index</h3> | ||
<h1> | ||
<a id="algowiki" class="anchor" href="#algowiki" aria-hidden="true"><span class="octicon octicon-link"></span></a>AlgoWiki</h1> | ||
|
||
<ul> | ||
<li><a href="#data-science-introduction">Data Science Introduction</a></li> | ||
<li><a href="#big-data-processing">Data Processing</a></li> | ||
<li> | ||
<a href="#big-data-analysis">Data Analysis</a> | ||
|
||
<ul> | ||
<li><a href="#fundamentals">Fundamentals</a></li> | ||
<li><a href="#network-analysis">Network Analysis</a></li> | ||
<li><a href="#statistics">Statistics</a></li> | ||
<li><a href="#data-mining">Data Mining</a></li> | ||
<li><a href="#machine-learning">Machine Learning</a></li> | ||
</ul> | ||
</li> | ||
<li> | ||
<a href="#big-data-application">Data Science Application</a> | ||
<p>On Internet, There is a lot of knowledge on different topics scarred over different sources. Most of the knowledge is either online on the web or with the people as human knowledge. I want to create this repository as a platform to bind this scarred piece of knowledge at one place! </p> | ||
|
||
<ul> | ||
<li><a href="#data-visualization">Data Visualization</a></li> | ||
</ul> | ||
</li> | ||
<li><a href="#uncategorized">Uncategorized</a></li> | ||
<li> | ||
<a href="#moocs">MOOCs about Data Science</a><br> | ||
</li> | ||
</ul> | ||
<h1> | ||
<a id="navigation" class="anchor" href="#navigation" aria-hidden="true"><span class="octicon octicon-link"></span></a>Navigation</h1> | ||
|
||
<h3> | ||
<a id="data-science-introduction" class="anchor" href="#data-science-introduction" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Science Introduction</h3> | ||
<p><strong>Some of the links below contain only Pdfs books we will add websites and video resources soon!</strong></p> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://www.amazon.com/Big-Data-Now-2012-Edition-ebook/dp/B0097E4EBQ">Big Data Now: 2012 Edition</a> - O'Reilly Media Inc. - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://en.wikibooks.org/wiki/Data_Science:_An_Introduction">Data Science: An Introduction</a> - Wikibook - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.amazon.com/Disruptive-Possibilities-Data-Changes-Everything-ebook/dp/B00CLH387W">Disruptive Possibilities: How Big Data Changes Everything</a> - Jeffrey Needham - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://jsresearch.net/">Introduction to Data Science</a> - Jeffery Stanton - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.amazon.com/Real-Time-Big-Data-Analytics-Architecture-ebook/dp/B00DO33RSW">Real-Time Big Data Analytics: Emerging Architecture</a> - Mike Barlow - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.amazon.com/The-Evolution-Data-Products-ebook/dp/B005QEKQUY/ref=sr_1_63?s=digital-text&ie=UTF8&qid=1351898530&sr=1-63">The Evolution of Data Products</a> - Mike Loukides - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.aspeninstitute.org/sites/default/files/content/docs/pubs/The_Promise_and_Peril_of_Big_Data.pdf">The Promise and Peril of Big Data</a> - David Bollier - <code>Beginner</code> | ||
</li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/35ba2bc1ff92673eea81dc6eda8bb476719f00b5/Competitive-Programming/Competitive-Programming.md">All about Competitve-Programming</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/Algorithms/Sources.md">Algoriths and Their Implement from different sources</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/Free-Books/Algorithms-Data_Structures.md">Free Algorithm Books</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/Free-Books/Data%20Science.md">Free Data Science Book pdfs</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/Machine-Learning/Sources.md">Machine Learning</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/C/sources.md">C~pdf books and websites</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/C_plus_plus/resources.md">C++</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/HTML_CSS/html_resources.md">HTML</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/Interviews/resources.md">Interview Preparation</a></li> | ||
<li><a href="https://github.com/vicky002/AlgoWiki/blob/gh-pages/JAVASCRIPT/resources.md">JavaScript</a></li> | ||
<li><a href="https://github.com/airbnb/javascript/blob/master/README.md">JavaScript Guide</a></li> | ||
</ul> | ||
|
||
<h3> | ||
<a id="data-processing" class="anchor" href="#data-processing" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Processing</h3> | ||
<h1> | ||
<a id="how-to-contribute" class="anchor" href="#how-to-contribute" aria-hidden="true"><span class="octicon octicon-link"></span></a>How to Contribute</h1> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf">Data-Intensive Text Processing with MapReduce</a> - Jimmy Lin and Chris Dyer - <code>Intermediate</code> | ||
</li> | ||
</ul> | ||
|
||
<h3> | ||
<a id="data-analysis" class="anchor" href="#data-analysis" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Analysis</h3> | ||
<p>We are collecting Websites and resources! Send files,pdfs,printed articles or your bookmark folder @<a href="mailto:[email protected]">[email protected]</a> </p> | ||
|
||
<h4> | ||
<a id="fundamentals" class="anchor" href="#fundamentals" aria-hidden="true"><span class="octicon octicon-link"></span></a>Fundamentals</h4> | ||
<h1> | ||
<a id="read-our-contribution-page" class="anchor" href="#read-our-contribution-page" aria-hidden="true"><span class="octicon octicon-link"></span></a>Read Our Contribution Page</h1> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://ads.harvard.edu/books/1990fnmd.book/">Fundamental Numerical Methods and Data Analysis</a> - George W. Collins - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.getty.edu/research/publications/electronic_publications/intrometadata/index.html">Introduction to Metadata</a> - Murtha Baca - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://cran.r-project.org/doc/manuals/R-intro.pdf">Introduction to R - Notes on R: A Programming Environment for Data Analysis and Graphics</a> - W. N. Venables, D. M. Smith, and the R Core Team - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://modelingwithdata.org/about_the_book.html">Modeling with Data: Tools and Techniques for Scientific Computing</a> - Ben Klemens - <code>Beginner</code> | ||
</li> | ||
<li><a href="https://github.com/vicky002/Wiki_Knowledge/wiki/Contribution">Contributing to this repository</a></li> | ||
<li>You can Add links of different sources on different topics</li> | ||
<li>You can also create topics and add diffrent resources to it.</li> | ||
<li>Make sure that links that you provide should be related to the topic!</li> | ||
</ul> | ||
|
||
<h4> | ||
<a id="network-analysis" class="anchor" href="#network-analysis" aria-hidden="true"><span class="octicon octicon-link"></span></a>Network Analysis</h4> | ||
<h1> | ||
<a id="topics" class="anchor" href="#topics" aria-hidden="true"><span class="octicon octicon-link"></span></a>Topics</h1> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://faculty.ucr.edu/%7Ehanneman/nettext/">Introduction to Social Network Methods</a> - Robert A. Hanneman and Mark Riddle - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.cs.cornell.edu/home/kleinber/networks-book/">Networks, Crowds, and Markets: Reasoning About a Highly Connected World</a> - David Easley and Jon Kleinberg - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://barabasilab.neu.edu/networksciencebook/downlPDF.html">Network Science</a> - Sarah Morrison - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf">The Wealth of Networks</a> - Yochai Benkler - <code>Beginner</code> | ||
</li> | ||
</ul> | ||
|
||
<h4> | ||
<a id="statistics" class="anchor" href="#statistics" aria-hidden="true"><span class="octicon octicon-link"></span></a>Statistics</h4> | ||
<li>Algorithms</li> | ||
<li>Operating System</li> | ||
<li>Competitive Programming</li> | ||
<li>Web Languages | ||
|
||
<ul> | ||
<li> | ||
<a href="http://www.stat.cmu.edu/%7Ecshalizi/ADAfaEPoV/ADAfaEPoV.pdf">Advanced Data Analysis from an Elementary Point of View</a> - Cosma Rohilla Shalizi - <code>Veternan</code> | ||
</li> | ||
<li> | ||
<a href="http://cran.r-project.org/doc/manuals/R-intro.pdf">An Introduction to R</a> - W. N. Venables, D. M. Smith, and the R Core Team - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.ualberta.ca/%7Ebaayen/publications/baayenCUPstats.pdf">Analyzing Linguistic Data: a practical introduction to statistics</a> - R. H. Baayan - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://columbia-applied-data-science.github.io/appdatasci.pdf">Applied Data Science</a> - Ian Langmore and Daniel Krasner - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://vassarstats.net/textbook/">Concepts and Applications of Inferential Statistics</a> - Richard Lowry - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="https://www.otexts.org/fpp/">Forecasting: Principles and Practice</a> - Rob J. Hyndman and George Athanasopoulos - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.math.umass.edu/%7Elavine/Book/book.html">Introduction to Probability</a> - Charles M. Grinstead and J. Laurie Snell - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.math.umass.edu/%7Elavine/Book/book.pdf">Introduction to Statistical Thought</a> - Michael Lavine - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.openintro.org/stat/textbook.php">OpenIntro Statistics - Second Edition</a> - David M. Diez, Christopher D. Barr, and Mine Cetinkaya-Rundel - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf">simpleR - Using R for Introductory Statistics</a> - John Verzani - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://upload.wikimedia.org/wikipedia/commons/8/82/Statistics.pdf">Statistics</a> - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.greenteapress.com/thinkstats/thinkstats.pdf">Think Stats: Probability and Statistics for Programmers</a> - Allen B. Downey - <code>Beginner</code> | ||
</li> | ||
<li> Html</li> | ||
<li> Javascipt</li> | ||
<li> JQuery</li> | ||
<li> php, etc!</li> | ||
</ul> | ||
|
||
<h4> | ||
<a id="data-mining" class="anchor" href="#data-mining" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Mining</h4> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://www2.dcc.ufmg.br/livros/miningalgorithms/files/pdf/dmafca.pdf">Data Mining and Analysis: Fundamental Concepts and Algorithms</a> - Mohammed J. Zaki and Wagner Meira Jr. - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.intechopen.com/books/data_mining_and_knowledge_discovery_in_real_life_applications">Data Mining and Knowledge Discovery in Real Life Applications</a> - Julio Ponce and Adem Karahoca - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://link.springer.com/book/10.1007%2F978-1-4419-6287-4">Data Mining for Social Network Data</a> - Springer - <code>Veteran</code> | ||
</li> | ||
<li> | ||
<a href="http://infolab.stanford.edu/%7Eullman/mmds/book.pdf">Mining of Massive Datasets</a> - Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.intechopen.com/books/knowledge-oriented-applications-in-data-mininge">Knowledge-Oriented Applications in Data Mining</a> - Kimito Funatsu - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining">New Fundamental Technologies in Data Mining</a> - Kimito Funatsu - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://cran.r-project.org/doc/contrib/Zhao_R_and_data_mining.pdf">R and Data Mining: Examples and Case Studies</a> - Yanchang Zhao - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://statweb.stanford.edu/%7Etibs/ElemStatLearn/">The Elements of Statistical Learning</a> - Trevor Hastie, Robert Tibshirani, and Jerome Friedman - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.intechopen.com/books/theory-and-applications-for-advanced-text-mining">Theory and Applications for Advanced Text Mining</a> - Shigeaki Sakurai - <code>Intermediate</code> | ||
</li> | ||
</ul> | ||
|
||
<h4> | ||
<a id="machine-learning" class="anchor" href="#machine-learning" aria-hidden="true"><span class="octicon octicon-link"></span></a>Machine Learning</h4> | ||
<li>Programming Language | ||
|
||
<ul> | ||
<li> | ||
<a href="http://ciml.info/">A Course in Machine Learning</a> - Hal Daume - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="https://www.ics.uci.edu/%7Ewelling/teaching/273ASpring10/IntroMLBook.pdf">A First Encounter with Machine Learning</a> - Max Welling - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/031013.pdf">Bayesian Reasoning and Machine Learning</a> - David Barber - <code>Veteran</code> | ||
</li> | ||
<li> | ||
<a href="http://www.gaussianprocess.org/gpml/chapters/">Gaussian Processes for Machine Learning</a> - Carl Edward Rasmussen and Christopher K. I. Williams - <code>Veteran</code> | ||
</li> | ||
<li> | ||
<a href="http://alex.smola.org/drafts/thebook.pdf">Introduction to Machine Learning</a> - Alex Smola and S.V.N. Vishwanathan - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/">Probabilistic Programming & Bayesian Methods for Hackers</a> - Cam Davidson-Pilon (main author) - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.lionsolver.com/LIONbook/">The LION Way: Machine Learning plus Intelligent Optimization</a> - Robert Battiti and Mauro Brunato - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://www.greenteapress.com/thinkbayes/">Thinking Bayes</a> - Allen B. Downey - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://nbviewer.ipython.org/github/jakevdp/sklearn_scipy2013/tree/master/notebooks/">Sklearn Basics</a> - <code>Beginner</code> | ||
</li> | ||
<li>C</li> | ||
<li>C++</li> | ||
<li>Java</li> | ||
</ul> | ||
|
||
<h3> | ||
<a id="data-science-application" class="anchor" href="#data-science-application" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Science Application</h3> | ||
|
||
<h4> | ||
<a id="information-retrieval" class="anchor" href="#information-retrieval" aria-hidden="true"><span class="octicon octicon-link"></span></a>Information Retrieval</h4> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://nlp.stanford.edu/IR-book/">Introduction to Information Retrival</a> - Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze - <code>Intermediate</code> | ||
</li> | ||
</ul> | ||
|
||
<h4> | ||
<a id="data-visualization" class="anchor" href="#data-visualization" aria-hidden="true"><span class="octicon octicon-link"></span></a>Data Visualization</h4> | ||
<li>Machine Learning</li> | ||
<li>Artificial Intelligence</li> | ||
<li>Discrete Mathematics | ||
|
||
<ul> | ||
<li> | ||
<a href="http://chimera.labs.oreilly.com/books/1230000000345/index.html">Interactive Data Visualization for the Web</a> - Scott Murray - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://nbviewer.ipython.org/urls/gist.github.com/fonnesbeck/5850463/raw/a29d9ffb863bfab09ff6c1fc853e1d5bf69fe3e4/3.+Plotting+and+Visualization.ipynb">Plotting and Visualization in Python</a> - <code>Beginner</code> | ||
</li> | ||
<li>Number Theory</li> | ||
<li>Graph Theory</li> | ||
<li>Combinatorics</li> | ||
<li>Game Theory etc!</li> | ||
</ul> | ||
|
||
<h3> | ||
<a id="uncategorized" class="anchor" href="#uncategorized" aria-hidden="true"><span class="octicon octicon-link"></span></a>Uncategorized</h3> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://datajournalismhandbook.org/1.0/en/">Data Journalism Handbook</a> - Jonathan Gray, Liliana Bounegru, and Lucy Chambers - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://assets.en.oreilly.com/1/eventseries/23/Building-Data-Science-Teams.pdf">Building Data Science Teams</a> - DJ Patil - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.inference.phy.cam.ac.uk/itprnn/book.html">Information Theory, Inference, and Learning Algorithms</a> - David MacKay - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_notes.pdf">Mathematics for Computer Science</a> - Eric Lehman, Thomas Leighton, and Albert R. Meyer - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://www.boozallen.com/media/file/The-Field-Guide-to-Data-Science.pdf">The Field Guide to Data Science</a> - <code>Beginner</code> | ||
</li> | ||
</ul> | ||
|
||
<h3> | ||
<a id="moocs-about-data-science" class="anchor" href="#moocs-about-data-science" aria-hidden="true"><span class="octicon octicon-link"></span></a>MOOCs about Data Science</h3> | ||
|
||
<ul> | ||
<li> | ||
<a href="http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/">Data Mining with Weka</a> - Ian H. Witten - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/datasci-001/class">Introduction to Data Science</a> - Bill Howe (Coursera) - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="https://www.udacity.com/course/ud617">Introduction to Hadoop and MapReduce</a> - Udacity - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/ml-003/class">Machine Learning</a> - Andrew Ng (Coursera) - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/ntumlone-001">Machine Learning Foundatiaons (taught in Chinese)</a> - Hsuan-Tien Lin - <code>Beginner</code> | ||
</li> | ||
<li> | ||
<a href="http://work.caltech.edu/library/#!?goback=.gde_35222_member_5810981726511443971">Machine Learning Video Library</a> - Yaser Abu-Mostafa - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/nlp/lecture/preview">Natural Language Processing</a> - Dan Jurafsky and Christopher Manning (Coursera) - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/networksonline-001/class">Social and Economic Networks: Models and Analysis</a> - Matthew O. Jackson (Coursera) - <code>Intermediate</code> | ||
</li> | ||
<li> | ||
<a href="https://class.coursera.org/sna-003/class">Social Network Analysis</a> - Lada Adamic (Coursera) - <code>Intermediate</code> | ||
</li> | ||
</ul> | ||
<p>There are many topics, you can contribute to it, create topics add resources to it!</p> | ||
</section> | ||
<footer> | ||
<p>This project is maintained by <a href="https://github.com/vicky002">vicky002</a></p> | ||
|
Oops, something went wrong.