Skip to content

Commit

Permalink
NF mapper utils for vol2surf and nanproject
Browse files Browse the repository at this point in the history
  • Loading branch information
mvdoc committed May 21, 2024
1 parent a536835 commit 3e886e9
Show file tree
Hide file tree
Showing 2 changed files with 132 additions and 0 deletions.
1 change: 1 addition & 0 deletions cortex/mapper/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

from .. import dataset
from .mapper import Mapper, _savecache
from .utils import nanproject, vol2surf


def get_mapper(subject, xfmname, type='nearest', recache=False, **kwargs):
Expand Down
131 changes: 131 additions & 0 deletions cortex/mapper/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import cortex
import numpy as np
import scipy


def nanproject(data, mapper, reweigh=True):
"""Project data using the passed mapper while dealing with NaNs.
Parameters
----------
data : array-like (n_voxels,) or (n_samples, n_voxels)
The data to be projected.
mapper : sparse matrix (n_vertices, n_voxels)
reweigh : bool
Whether to reweigh the mapper after dealing with NaNs. (Mostly for debugging,
this should be left to True).
Returns
-------
data_projected : array-like (n_vertices, ) or (n_samples, n_vertices)
The projected data.
"""
is_1d = False
if data.ndim == 1:
data = np.atleast_2d(data)
is_1d = True
if data.ndim > 2:
raise ValueError("Only one-dimensional or two-dimensional data are allowed")
# First zero-out nans
good = ~(np.any(np.isnan(data), axis=0))
n_voxels = data.shape[1]
# make diagonal sparse matrix with mask
good_sparse = scipy.sparse.csr_matrix(
(good.astype(float), (np.arange(n_voxels), np.arange(n_voxels)))
)
# zero-out voxels with nans
good_mapper = mapper.dot(good_sparse)
# change data in rows
if reweigh:
# now convert to lil to reweigh everything
good_mapper = good_mapper.tolil()
# take only rows with data to be used
rows_to_change = np.where(good_mapper.sum(1) > 0.0)[0]
for row in rows_to_change:
sum_row = sum(good_mapper.data[row])
good_mapper.data[row] = [dt / sum_row for dt in good_mapper.data[row]]
# convert back to csr
good_mapper = good_mapper.tocsr()
# project -- mapper is (n_vertices, n_voxels), data is (n_samples, n_voxels)
data_projected = good_mapper.dot(data.T).T
# set vertices receiving only nans to nan
bad = (~good).astype(float)
bad_vertex = np.abs(mapper.dot(bad) - 1.0) < 1e-09
data_projected[:, bad_vertex] = np.nan
if is_1d:
data_projected = data_projected[0]
return data_projected


def vol2surf(
data,
subject,
xfm_name,
target_surface="native",
mask_name="thick",
mapper="line_nearest",
subject_freesurfer=None,
):
"""Project a subject's volumetric data to a target surface.
Parameters
----------
data : array (n_voxels,) or (n_samples, n_voxels)
The flattened volumetric data.
subject : str
Subject name.
xfm_name : str
Transform name.
mask_name : str
Mask to use for the projection. Default is "thick". It should match the
`n_voxels`.
target_surface : str
Surface to project the data to. Default is "native", corresponding to the
participant's surface. Alternatives are "fsaverage", "fsaverage6", "fsaverage5",
or other freesurfer participant codes.
mapper : str
Type of mapper to go from volume to the native surface of the subject.
Just use `line_nearest` if in doubt.
subject_freesurfer : str or None
Freesurfer's subject name. If None, it will be the same as `subject`.
Returns
-------
data_projected : array (n_vertices,) or (n_samples, n_vertices)
The projected data.
Notes
-----
This function averages only non-NaN values. It should be equivalent to nanmean=True
in pycortex's quickflat.
"""
if data.ndim == 1:
axis = 0
elif data.ndim == 2:
axis = 1
else:
raise ValueError(
"This function works only with 1-dimensional or 2-dimensional arrays."
)
if subject_freesurfer is None:
subject_freesurfer = subject
# Get pycortex's mapper to go from volume to fsnative
voxel2fsnative = cortex.get_mapper(subject, xfm_name, mapper).masks
mask = cortex.db.get_mask(subject, xfm_name, type=mask_name).ravel()
assert mask.sum() == data.shape[axis]
# Select only voxels in the thick mask
voxel2fsnative = [vfs[:, mask] for vfs in voxel2fsnative]
if target_surface == "native":
data_projected = nanproject(data, voxel2fsnative)
else:
fsnative2fsaverage = cortex.db.get_mri_surf2surf_matrix(
subject, "fiducial", fs_subj=subject_freesurfer, target_subj=target_surface
)
# Compute projection from volume to fsaverage by combining
# voxel2fsnative -> fsnative2fsaverage
voxel2fsaverage = scipy.sparse.vstack(
[m1.dot(m2) for m1, m2 in zip(fsnative2fsaverage, voxel2fsnative)]
)
# Project data
data_projected = nanproject(data, voxel2fsaverage)
return data_projected

0 comments on commit 3e886e9

Please sign in to comment.