Skip to content

Releases: flennerhag/mlens

0.2.3

30 Oct 22:34
147aac1
Compare
Choose a tag to compare
  • Pandas compatibility
  • Ensembles for time series
  • Softer parameter checks
  • Bug fixes

0.2.2

20 Feb 10:41
Compare
Choose a tag to compare
  • Param change check errors fixed
  • Param change raise warning
  • Minor bug fixes
  • Copyright

0.2.1

05 Nov 18:02
Compare
Choose a tag to compare

Introducing the computational graph backend. Version 0.2.0 implements the Learner-Transformer API, which generalizes the backend and expands the low-level API.

Version 0.2.1. includes critical a patch for model selection.

0.1.6

01 Nov 11:31
Compare
Choose a tag to compare
Merge pull request #50 from flennerhag/dev

0.1.6

0.1.5.2

27 Jul 11:37
Compare
Choose a tag to compare
  • Bug fixes
  • Print messages during estimation
  • Clear cache

0.1.5.1

25 Jul 12:43
Compare
Choose a tag to compare
  • Fixed model selection random draw argument bug

0.1.5

18 Jul 15:50
Compare
Choose a tag to compare
  • Possible to set environmental variables
  • multiprocessing default backend
  • spawn as default start method for parallel jobs (w. multiprocessing)
  • Possible to specify y as partition input in clustered subsumable partitioning
  • Minor bug fixes
  • Refactored backend for streamlined front-end feature development

0.1.4

13 Jul 08:19
Compare
Choose a tag to compare

Updates

  • Prediction array dtype option (default=float32)
  • Feature propagation
  • Clustered subsemble partitioning
  • No memmaps passed to estimators (only ndarray views)
  • Threading as default global backend (changeable through mlens.config.BACKEND)
  • Global configuration (mlens.config)
  • Optional specification of temporary directory
  • Scoring exception handling

0.1.3

30 May 20:36
Compare
Choose a tag to compare

Increased array checks, update of visualization APIs.

0.1.2

18 May 09:24
Compare
Choose a tag to compare
  • accepts supervised transformation
  • ensure training set is a view for K=2 and no preprocessing
  • bug fixes model selection