-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
""" | ||
This script tests the non-split timestepper against the split timestepper | ||
using an advection equation with a physics parametrisation. | ||
One split method is tested, whilst different nonsplit IMEX and explicit time | ||
discretisations are used for the dynamics and physics. | ||
""" | ||
|
||
from firedrake import (SpatialCoordinate, PeriodicIntervalMesh, exp, as_vector, | ||
norm, Constant, conditional, sqrt, VectorFunctionSpace) | ||
from gusto import * | ||
import pytest | ||
|
||
|
||
def run_nonsplit_adv_physics(tmpdir, timestepper): | ||
""" | ||
Runs the advection equation with a physics parametrisation using different timesteppers. | ||
""" | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Set up model objects | ||
# ------------------------------------------------------------------------ # | ||
|
||
# Domain | ||
dt = 0.01 | ||
tmax = 0.75 | ||
L = 10 | ||
mesh = PeriodicIntervalMesh(20, L) | ||
domain = Domain(mesh, dt, "CG", 1) | ||
|
||
# Equation | ||
V = domain.spaces("DG") | ||
Vu = VectorFunctionSpace(mesh, "CG", 1) | ||
equation = ContinuityEquation(domain, V, "f", Vu=Vu) | ||
spatial_methods = [DGUpwind(equation, "f")] | ||
|
||
x = SpatialCoordinate(mesh) | ||
|
||
# Add a source term to inject mass into the domain. | ||
source_expression = -Constant(0.5) | ||
physics_schemes = [(SourceSink(equation, "f", source_expression), SSPRK3(domain))] | ||
|
||
# I/O | ||
output = OutputParameters(dirname=str(tmpdir), dumpfreq=25) | ||
io = IO(domain, output) | ||
|
||
time_varying_velocity = False | ||
|
||
# Time stepper | ||
if timestepper == 'split': | ||
# Split with no defined weights | ||
dynamics_schemes = {'transport': ImplicitMidpoint(domain)} | ||
term_splitting = ['transport', 'physics'] | ||
stepper = SplitTimestepper(equation, term_splitting, dynamics_schemes, | ||
io, spatial_methods=spatial_methods, | ||
physics_schemes=physics_schemes) | ||
elif timestepper == 'nonsplit_imex_rk': | ||
# Split continuity term | ||
equation = split_continuity_form(equation) | ||
# Label terms as implicit and explicit | ||
equation.label_terms(lambda t: not any(t.has_label(time_derivative, transport)), implicit) | ||
equation.label_terms(lambda t: t.has_label(transport), explicit) | ||
dynamics_schemes = IMEX_SSP3(domain) | ||
stepper = PrescribedTransport(equation, dynamics_schemes, | ||
io, time_varying_velocity, | ||
transport_method=spatial_methods) | ||
elif timestepper == 'nonsplit_exp_rk': | ||
dynamics_schemes = SSPRK3(domain) | ||
stepper = PrescribedTransport(equation, dynamics_schemes, | ||
io, time_varying_velocity, | ||
transport_method=spatial_methods) | ||
elif timestepper == 'nonsplit_imex_sdc': | ||
# Split continuity term | ||
equation = split_continuity_form(equation) | ||
# Label terms as implicit and explicit | ||
equation.label_terms(lambda t: not any(t.has_label(time_derivative, transport)), implicit) | ||
equation.label_terms(lambda t: t.has_label(transport), explicit) | ||
|
||
node_type = "LEGENDRE" | ||
qdelta_imp = "LU" | ||
qdelta_exp = "FE" | ||
quad_type = "RADAU-RIGHT" | ||
M = 2 | ||
k = 2 | ||
base_scheme = IMEX_Euler(domain) | ||
dynamics_schemes = SDC(base_scheme, domain, M, k, quad_type, node_type, qdelta_imp, | ||
qdelta_exp, formulation="Z2N", final_update=True, initial_guess="base") | ||
stepper = PrescribedTransport(equation, dynamics_schemes, | ||
io, time_varying_velocity, | ||
transport_method=spatial_methods) | ||
elif timestepper == 'nonsplit_exp_multistep': | ||
dynamics_schemes = AdamsBashforth(domain, order=2) | ||
stepper = PrescribedTransport(equation, dynamics_schemes, | ||
io, time_varying_velocity, | ||
transport_method=spatial_methods) | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Initial conditions | ||
# ------------------------------------------------------------------------ # | ||
|
||
xc_init = 0.25 * L | ||
xc_end = 0.75 * L | ||
umax = 0.5 * L / tmax | ||
|
||
# Get minimum distance on periodic interval to xc | ||
x_init = conditional(sqrt((x[0] - xc_init) ** 2) < 0.5 * L, | ||
x[0] - xc_init, L + x[0] - xc_init) | ||
|
||
x_end = conditional(sqrt((x[0] - xc_end) ** 2) < 0.5 * L, | ||
x[0] - xc_end, L + x[0] - xc_end) | ||
|
||
f_init = 5.0 | ||
f_end = f_init | ||
f_width_init = L / 10.0 | ||
f_width_end = f_width_init | ||
f_init_expr = f_init * exp(-(x_init / f_width_init) ** 2) | ||
|
||
# The end Gaussian should be advected by half the domain | ||
# length and include more mass due to the source term. | ||
f_end_expr = 0.5 + f_end * exp(-(x_end / f_width_end) ** 2) | ||
|
||
stepper.fields('f').interpolate(f_init_expr) | ||
stepper.fields('u').interpolate(as_vector([Constant(umax)])) | ||
f_end = stepper.fields('f_end', space=V) | ||
f_end.interpolate(f_end_expr) | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Run | ||
# ------------------------------------------------------------------------ # | ||
|
||
stepper.run(0, tmax=tmax) | ||
|
||
error = norm(stepper.fields('f') - f_end) / norm(f_end) | ||
|
||
return error | ||
|
||
|
||
@pytest.mark.parametrize("timestepper", ["split", "nonsplit_imex_rk", "nonsplit_imex_sdc", | ||
"nonsplit_exp_rk", "nonsplit_exp_multistep"]) | ||
def test_nonsplit_adv_physics(tmpdir, timestepper): | ||
""" | ||
Test the nonsplit timestepper in the advection equation with source physics. | ||
""" | ||
tol = 0.12 | ||
error = run_nonsplit_adv_physics(tmpdir, timestepper) | ||
assert error < tol, 'The nonsplit timestepper in the advection' + \ | ||
'equation with source physics has an error greater than ' + \ | ||
'the permitted tolerance' |