Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update #52

Merged
merged 2 commits into from
Oct 11, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 19 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,9 @@ Mab2Rec is built on top of several other open-source software developed at the A

* [MABWiser](https://github.com/fidelity/mabwiser) to create multi-armed bandit recommendation algorithms ([Bridge@AAAI'24](http://osullivan.ucc.ie/CPML2024/papers/06.pdf), [TMLR'22](https://openreview.net/pdf?id=sX9d3gfwtE), [IJAIT'21](https://www.worldscientific.com/doi/abs/10.1142/S0218213021500214), [ICTAI'19](https://ieeexplore.ieee.org/document/8995418)).
* [TextWiser](https://github.com/fidelity/textwiser) to create item representations via text featurization ([AAAI'21](https://ojs.aaai.org/index.php/AAAI/article/view/17814)).
* [Selective](https://github.com/fidelity/selective) to create user representations via feature selection ([CPAIOR'21](https://link.springer.com/chapter/10.1007/978-3-030-78230-6_27), [DSO@IJCAI'21](https://arxiv.org/abs/2112.03105)).
* [Selective](https://github.com/fidelity/selective) to create user representations via feature selection ([AMAI'24](https://trebuchet.public.springernature.app/get_content/2c9eb6df-5c2b-42bc-89d6-4e3eb8bc8799?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=nonoa_20240405&utm_content=10.1007/s10472-024-09941-x), [CPAIOR'21](https://link.springer.com/chapter/10.1007/978-3-030-78230-6_27), [DSO@IJCAI'21](https://arxiv.org/abs/2112.03105)).
AshishPvjs marked this conversation as resolved.
Show resolved Hide resolved
* [Seq2Pat](https://github.com/fidelity/seq2pat) to create user representations via sequential pattern mining ([AI Magazine'23](https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12081), [AAAI'22](https://ojs.aaai.org/index.php/AAAI/article/view/21542), [Bridge@AAAI'23](http://osullivan.ucc.ie/CPML2023/submissions/09.pdf), [Frontiers'22](https://www.frontiersin.org/articles/10.3389/frai.2022.868085/full), [KDF@AAAI'22](https://arxiv.org/abs/2201.09178), [CMU Blog Post](https://www.cmu.edu/tepper/news/stories/2023/may/fidelity-ai.html))
* [Jurity](https://github.com/fidelity/jurity) to evaluate recommendations including fairness metrics ([LION'23](https://link.springer.com/chapter/10.1007/978-3-031-44505-7_29), [CIKM'22](https://ceur-ws.org/Vol-3318/short6.pdf), [ICMLA'21](https://ieeexplore.ieee.org/abstract/document/9680169)).
* [Jurity](https://github.com/fidelity/jurity) to evaluate recommendations including fairness metrics ([ACM'24](https://dl.acm.org/doi/10.1145/3700145), [LION'23](https://link.springer.com/chapter/10.1007/978-3-031-44505-7_29), [CIKM'22](https://ceur-ws.org/Vol-3318/short6.pdf), [ICMLA'21](https://ieeexplore.ieee.org/abstract/document/9680169)).

An introduction to **content- and context-aware** recommender systems and an overview of the building blocks of the library is presented at [AAAI 2024](https://underline.io/lecture/91479-building-higher-order-abstractions-from-the-components-of-recommender-systems) and [All Things Open 2021](https://www.youtube.com/watch?v=54d_YUalvOA). There is a corresponding [blogpost](https://2022.allthingsopen.org/introducing-mab2rec-a-multi-armed-bandit-recommender-library/) to serve as a starting point for practioners to build and deploy bandit-based recommenders using Mab2Rec.

Expand Down Expand Up @@ -94,6 +94,23 @@ We provide extensive tutorials in the [notebooks](notebooks) folder with guideli

Mab2Rec requires **Python 3.8+** and can be installed from PyPI using ``pip install mab2rec`` or by building from source as shown in [installation instructions](https://fidelity.github.io/mab2rec/installation.html).

## Citation

If you use Mab2Rec in a publication, please cite it as:

```bibtex
@inproceedings{DBLP:conf/aaai/KadiogluK24,
author = {Serdar Kadioglu and Bernard Kleynhans},
title = {Building Higher-Order Abstractions from the Components of Recommender Systems},
booktitle = {Thirty-Eighth {AAAI} Conference on Artificial Intelligence, {AAAI} 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, {IAAI} 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2014, February 20-27, 2024, Vancouver, Canada},
pages = {22998--23004},
publisher = {{AAAI} Press},
year = {2024},
url = {https://doi.org/10.1609/aaai.v38i21.30341},
doi = {10.1609/AAAI.V38I21.30341}
}
```

## Support

Please submit bug reports and feature requests as [Issues](https://github.com/fidelity/mab2rec/issues).
Expand Down
Loading