Skip to content

felipeliliti/vertex-ai-samples

 
 

Repository files navigation

PROJETO ANTI APAGÃO AVANÇADO

License

Welcome to the Google Cloud Vertex AI sample repository.

Overview

The repository contains notebooks and community content that demonstrate how to develop and manage ML workflows using Google Cloud Vertex AI.

Repository structure

├── community-content - Sample code and tutorials contributed by the community
├── notebooks
│   ├── community - Notebooks contributed by the community
│   ├── official - Notebooks demonstrating use of each Vertex AI service
│   │   ├── automl
│   │   ├── custom
│   │   ├── ...

Contributing

Contributions welcome! See the Contributing Guide.

Getting help

Please use the issues page to provide feedback or submit a bug report.

Disclaimer

This is not an officially supported Google product. The code in this repository is for demonstrative purposes only.

Feedback

Please feel free to fill out our survey to give us feedback on the repo and its content. import pandas as pd import numpy as np import requests

def collect_data(api_url): response = requests.get(api_url) data = response.json() df = pd.DataFrame(data) return df

Exemplo de URL de API para coleta de dados

api_url = "https://example.com/api/system_status" data = collect_data(api_url)from sklearn.ensemble import IsolationForest

def detect_anomalies(data): model = IsolationForest(contamination=0.01) model.fit(data) data['anomaly'] = model.predict(data) anomalies = data[data['anomaly'] == -1] return anomalies

anomalies = detect_anomalies(data)from twilio.rest import Client

def send_alert(anomalies): if not anomalies.empty: account_sid = 'your_account_sid' auth_token = 'your_auth_token' client = Client(account_sid, auth_token) message = client.messages.create( body=f"Anomalias detectadas: {anomalies}", from_='+1234567890', to='+0987654321' ) print(message.sid)

send_alert(anomalies) from flask import Flask, render_template import pandas as pd

app = Flask(name)

@app.route('/') def index(): data = collect_data(api_url) anomalies = detect_anomalies(data) return render_template('index.html', tables=[data.to_html(classes='data', header="true"), anomalies.to_html(classes='data', header="true")])

if name == 'main': app.run(debug=True)from apscheduler.schedulers.blocking import BlockingScheduler

scheduler = BlockingScheduler()

@scheduler.scheduled_job('interval', minutes=5) def scheduled_job(): data = collect_data(api_url) anomalies = detect_anomalies(data) send_alert(anomalies)

scheduler.start()

<title>TechGuardian Dashboard</title>

Status dos Sistemas

Dados Coletados

{{ tables[0]|safe }}

Anomalias Detectadas

{{ tables[1]|safe }}

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.8%
  • Python 1.9%
  • Other 0.3%