Skip to content

Implementation of U-Net architecture using Pytorch

Notifications You must be signed in to change notification settings

felicia126/Unet_pytorch

This branch is 2 commits behind jakeoung/Unet_pytorch:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c190dfc · Feb 5, 2017

History

13 Commits
Feb 5, 2017
Feb 5, 2017
Feb 5, 2017
Feb 5, 2017
Feb 3, 2017
Feb 5, 2017
Feb 5, 2017

Repository files navigation

Implementation of U-Net architecture using Pytorch.

This repository aims to practice pytorch and implement U-net architecture by Ronneberger et al. [1]. The used dataset is nerve ultrasound images and we aim to delineate nerve structures from them.

usage: main.py [-h] [--workers WORKERS] [--batchSize BATCHSIZE]
               [--niter NITER] [--start_epoch START_EPOCH] [--lr LR] [--cuda]
               [--resume PATH] [--useBN] [--output_name OUTPUT_NAME]
               dataroot

positional arguments:
  dataroot              path to dataset of kaggle ultrasound nerve
                        segmentation

optional arguments:
  -h, --help            show this help message and exit
  --workers WORKERS     number of data loading workers
  --batchSize BATCHSIZE
                        input batch size
  --niter NITER         number of epochs to train for
  --start_epoch START_EPOCH
                        number of epoch to start
  --lr LR               learning rate, default=0.0002
  --cuda                enables cuda
  --resume PATH         path to latest checkpoint (default: none)
  --useBN               enalbes batch normalization
  --output_name OUTPUT_NAME
                        output checkpoint filename

References

To-do

  • Do more tests
  • Add dice loss (Current loss is just MSEL2 loss)
  • U-net 2.0

Notes

  • Batch normalization is more robust than original version. without BN: (epoch 100, loss 2.056613136175425e-05) with BN: (epoch 100, loss 9.57660446428635e-07)

Sample results

To run our pre-trained model, commit:

python3 main.py data --resume checkpoint_BN.tar --niter 0 --useBN

original

Image

ground truth

Ground truth

prediction

Predicted segmentation

About

Implementation of U-Net architecture using Pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%