Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add support for creating LabeledVideoDataset from video frames #208

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 120 additions & 3 deletions pytorchvideo/data/labeled_video_paths.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,82 @@

import os
import pathlib
from typing import List, Optional, Tuple
from typing import List, Optional, Tuple, Dict, Union, Callable, cast

from iopath.common.file_io import g_pathmgr
from torchvision.datasets.folder import make_dataset
from torchvision.datasets.folder import (
make_dataset,
has_file_allowed_extension,
find_classes,
)


def make_dataset_from_video_folders(
directory: str,
class_to_idx: Optional[Dict[str, int]] = None,
extensions: Optional[Union[str, Tuple[str, ...]]] = None,
is_valid_file: Optional[Callable[[str], bool]] = None,
) -> List[Tuple[str, int]]:
"""Generates a list of samples of a form (path_to_sample, class).

See :class:`DatasetFolder` for details.

Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function
by default.
"""
directory = os.path.expanduser(directory)

if class_to_idx is None:
_, class_to_idx = find_classes(directory)
elif not class_to_idx:
raise ValueError(
"'class_to_index' must have at least one entry to collect any samples."
)

both_none = extensions is None and is_valid_file is None
both_something = extensions is not None and is_valid_file is not None
if both_none or both_something:
raise ValueError(
"Both extensions and is_valid_file cannot be None or not None at the same time"
)

if extensions is not None:

def is_valid_folder(x: str) -> bool:
if g_pathmgr.ls(x):
return has_file_allowed_extension(g_pathmgr.ls(x)[0], extensions)
else:
return False

is_valid_file = cast(Callable[[str], bool], is_valid_file)

instances = []
available_classes = set()
for target_class in sorted(class_to_idx.keys()):
class_index = class_to_idx[target_class]
target_dir = os.path.join(directory, target_class)
if not os.path.isdir(target_dir):
continue
for root, fnames, _ in sorted(os.walk(target_dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
if is_valid_folder(path):
item = path, class_index
instances.append(item)

if target_class not in available_classes:
available_classes.add(target_class)

empty_classes = set(class_to_idx.keys()) - available_classes
if empty_classes:
msg = (
f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "
)
if extensions is not None:
msg += f"Supported extensions are: {extensions if isinstance(extensions, str) else ', '.join(extensions)}"
raise FileNotFoundError(msg)

return instances


class LabeledVideoPaths:
Expand All @@ -29,7 +101,13 @@ def from_path(cls, data_path: str) -> LabeledVideoPaths:
if g_pathmgr.isfile(data_path):
return LabeledVideoPaths.from_csv(data_path)
elif g_pathmgr.isdir(data_path):
return LabeledVideoPaths.from_directory(data_path)
class_0 = g_pathmgr.ls(data_path)[0]
video_0 = g_pathmgr.ls(pathlib.Path(data_path) / class_0)[0]
video_0_path = pathlib.Path(data_path) / class_0 / video_0
if g_pathmgr.isfile(video_0_path):
return LabeledVideoPaths.from_directory(data_path)
else:
return LabeledVideoPaths.from_directory_of_video_folders(data_path)
else:
raise FileNotFoundError(f"{data_path} not found.")

Expand Down Expand Up @@ -106,6 +184,45 @@ def from_directory(cls, dir_path: str) -> LabeledVideoPaths:
), f"Failed to load dataset from {dir_path}."
return cls(video_paths_and_label)

@classmethod
def from_directory_of_video_folders(cls, dir_path: str) -> LabeledVideoPaths:
"""
Factory function that creates a LabeledVideoPaths object by parsing the structure
of the given directory's subdirectories into the classification labels. It
expects the directory format to be the following:
dir_path/<class_name>/<video_name>/<frame_name>.jpg

Classes are indexed from 0 to the number of classes, alphabetically.

E.g.
dir_path/class_x/vid1/xxx.ext
dir_path/class_x/vid1/xxy.ext
dir_path/class_x/vid2/xxz.ext
dir_path/class_y/vid3/123.ext
dir_path/class_y/vid4/nsdf3.ext
dir_path/class_y/vid4/asd932_.ext

Would produce two classes labeled 0 and 1 with 2 videos paths associated with each.

Args:
dir_path (str): Root directory to the video class directories .
"""
assert g_pathmgr.exists(dir_path), f"{dir_path} not found."

# Find all classes based on directory names. These classes are then sorted and indexed
# from 0 to the number of classes.
classes = sorted(
(f.name for f in pathlib.Path(dir_path).iterdir() if f.is_dir())
)
class_to_idx = {classes[i]: i for i in range(len(classes))}
video_paths_and_label = make_dataset_from_video_folders(
dir_path, class_to_idx, extensions=("jpg", "png")
)
assert (
len(video_paths_and_label) > 0
), f"Failed to load dataset from {dir_path}."
return cls(video_paths_and_label)

def __init__(
self, paths_and_labels: List[Tuple[str, Optional[int]]], path_prefix=""
) -> None:
Expand Down